Faculty Opinions recommendation of In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion.

Author(s):  
John Perfect
2007 ◽  
Vol 63 (6) ◽  
pp. 1606-1628 ◽  
Author(s):  
Sascha Thewes ◽  
Marianne Kretschmar ◽  
Hyunsook Park ◽  
Martin Schaller ◽  
Scott G. Filler ◽  
...  

2007 ◽  
Vol 56 (2) ◽  
pp. 266-270 ◽  
Author(s):  
Sascha Thewes ◽  
Hilde-Kristin Reed ◽  
Christian Grosse-Siestrup ◽  
David A. Groneberg ◽  
Michael Meissler ◽  
...  

To study invasion of the human fungal pathogen Candida albicans, several infection models have been established. This study describes the successful establishment of an ex vivo haemoperfused liver as a model to study invasion of C. albicans. Perfused organs from pigs could be kept functional for up to 12 h. By comparing a non-invasive and invasive strain of C. albicans and by following a time course of invasion, it was shown that the invasion process in the perfused liver infection model is very similar to the in vivo situation after intraperitoneal infection of mice. The advantage of this set-up compared with other models of invasion is discussed.


2020 ◽  
Vol 56 (4) ◽  
pp. 522-531 ◽  
Author(s):  
D. Basurto ◽  
N. Sananès ◽  
E. Verbeken ◽  
D. Sharma ◽  
E. Corno ◽  
...  

2019 ◽  
Vol 47 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Camilla Christensen ◽  
Lotte K. Kristensen ◽  
Maria Z. Alfsen ◽  
Carsten H. Nielsen ◽  
Andreas Kjaer

Abstract Purpose Despite remarkable clinical responses and prolonged survival across several cancers, not all patients benefit from PD-1/PD-L1 immune checkpoint blockade. Accordingly, assessment of tumour PD-L1 expression by immunohistochemistry (IHC) is increasingly applied to guide patient selection, therapeutic monitoring, and improve overall response rates. However, tissue-based methods are invasive and prone to sampling error. We therefore developed a PET radiotracer to specifically detect PD-L1 expression in a non-invasive manner, which could be of diagnostic and predictive value. Methods Anti-PD-L1 (clone 6E11, Genentech) was site-specifically conjugated with DIBO-DFO and radiolabelled with 89Zr (89Zr-DFO-6E11). 89Zr-DFO-6E11 was optimized in vivo by longitudinal PET imaging and dose escalation with excess unlabelled 6E11 in HCC827 tumour-bearing mice. Specificity of 89Zr-DFO-6E11 was evaluated in NSCLC xenografts and syngeneic tumour models with different levels of PD-L1 expression. In vivo imaging data was supported by ex vivo biodistribution, flow cytometry, and IHC. To evaluate the predictive value of 89Zr-DFO-6E11 PET imaging, CT26 tumour-bearing mice were subjected to external radiation therapy (XRT) in combination with PD-L1 blockade. Results 89Zr-DFO-6E11 was successfully labelled with a high radiochemical purity. The HCC827 tumours and lymphoid tissue were identified by 89Zr-DFO-6E11 PET imaging, and co-injection with 6E11 increased the relative tumour uptake and decreased the splenic uptake. 89Zr-DFO-6E11 detected the differences in PD-L1 expression among tumour models as evaluated by ex vivo methods. 89Zr-DFO-6E11 quantified the increase in PD-L1 expression in tumours and spleens of irradiated mice. XRT and anti-PD-L1 therapy effectively inhibited tumour growth in CT26 tumour-bearing mice (p < 0.01), and the maximum 89Zr-DFO-6E11 tumour-to-muscle ratio correlated with response to therapy (p = 0.0252). Conclusion PET imaging with 89Zr-DFO-6E11 is an attractive approach for specific, non-invasive, whole-body visualization of PD-L1 expression. PD-L1 expression can be modulated by radiotherapy regimens and 89Zr-DFO-6E11 PET is able to monitor these changes and predict the response to therapy in an immunocompetent tumour model.


2019 ◽  
Vol 29 ◽  
pp. S160-S161
Author(s):  
P. Mantuano ◽  
A. Mele ◽  
O. Cappellari ◽  
A. Fonzino ◽  
F. Sanarica ◽  
...  
Keyword(s):  
Ex Vivo ◽  
Mdx Mice ◽  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi124-vi124
Author(s):  
Angelie Rivera-Rodriguez ◽  
Lan Hoang-Minh ◽  
Leyda Marrero-Morales ◽  
Duane Mitchell ◽  
Carlos Rinaldi

Abstract BACKGROUND Adoptive cell therapies (ACT) are strategies being explored to boost the immune response against cancer. ACT cancer immunotherapies are effective against metastatic melanoma, leukemia, and lymphoma, but face challenges in treating other solid tumors, such as in the brain. A critical step for the success of ACT in solid cancers is achieving trafficking and persistence of T-cells at tumor sites. Glioblastoma (GBM) is the most common and aggressive cancer of the central nervous system in adults, with a prognosis of 15-18-month average patient survival after diagnosis. Biomedical imaging is often used to track cell therapies. Magnetic Particle Imaging (MPI) is a novel biomedical imaging modality enabling non-invasive visualization of the distribution of biocompatible superparamagnetic iron oxide (SPIO) tracers. OBJECTIVE Label T-cells with SPIO to non-invasively track adoptive T cell transfer immunotherapy with MPI in the context of brain cancer. METHODS Murine pmel-DsRed T-cells were isolated from the spleen of a transgenic C57BL/6 mouse, and were exposed to different SPIO concentrations ex vivo. Cell viability, phenotype, and cytotoxic function were analyzed to determine if T-cells were affected by the SPIO labeling. Moreover, in vivo experiments were performed in a murine GBM model, and labeled T-cells were injected intravenously and tracked using MPI. RESULTS The SPIO-labeling of T-cells did not affected cell viability, phenotype, or cell cytotoxic function at all tested incubation conditions. The internalized SPIO can be quantified and spatially detected using MPI both in vitro and in vivo. In addition, MPI in vivo tracking shows T-cells accumulation in liver and lungs, as well in the spleen and brain, as showed ex vivo. CONCLUSIONS SPIO-labeling of T-cells did not affected its cytotoxic function and MPI allows for in vivo tracking of adoptively T-cell transfer. MPI will provide better understanding of ACT dynamics to accelerate development of novel treatments.


2020 ◽  
Author(s):  
Fabian C. Herbert ◽  
Olivia Brohlin ◽  
Tyler Galbraith ◽  
Candace Benjamin ◽  
Cesar A. Reyes ◽  
...  

<div> <div> <div> <p>Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their non-fluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability towards pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveleas localization in the liver and </p> </div> </div> <div> <div> <p>kidneys after 2 h blood circulation and substantial elimination constructs as non-invasive in vivo imaging agents. </p> </div> </div> </div>


2020 ◽  
Author(s):  
F Pieropan ◽  
AD Rivera ◽  
G Williams ◽  
F Calzolari ◽  
AM Butt ◽  
...  

AbstractOligodendrocytes are the myelin forming cells of the central nervous system (CNS) and are generated from oligodendrocyte progenitor cells (OPCs). Disruption or loss of oligodendrocytes and myelin has devastating effects on CNS function and integrity, which occurs in diverse neurological disorders, including Multiple Sclerosis (MS), Alzheimer’s disease (AD) and neuropsychiatric disorders. Hence, there is a need to develop new therapies that promote oligodendrocyte regeneration and myelin repair. A promising approach is drug repurposing, but most agents have potentially contrasting biological actions depending on the cellular context and their dose-dependent effects on intracellular regulatory pathways. Here, we have used a combined drug connectivity systems biology and neurobiological approach to identify compounds that exert positive and negative effects on oligodendroglia, depending on concentration. Notably, LY294002, a potent inhibitor of PI3K/Akt signalling, was the most highly ranked small molecule for both pro- and anti-oligodendroglial effects. We validated these in silico findings in multiple in vivo and ex vivo neurobiological models and demonstrate that low and high doses of LY294002 have a profoundly bipartite effect on the generation of OPCs and their differentiation into myelinating oligodendrocytes. Finally, we employed transcriptional profiling and signalling pathway activity assays to determine cell-specific mechanisms of action of LY294002 on oligodendrocytes and resolve optimal in vivo conditions required to promote myelin repair. These results demonstrate the power of multifactorial neurobiological and in silico strategies in determining the therapeutic potential of small molecules in neurodegenerative disorders.One-sentence summaryDrug discovery and CNS myelination


Sign in / Sign up

Export Citation Format

Share Document