Faculty Opinions recommendation of Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors.

Author(s):  
Tali Siegal ◽  
Netta Levin
2003 ◽  
Vol 182 (5) ◽  
pp. 439-443 ◽  
Author(s):  
J. Burns ◽  
D. Job ◽  
M. E. Bastin ◽  
H. Whalley ◽  
T. Macgillivray ◽  
...  

BackgroundThere is growing evidence that schizophrenia is a disorder of cortical connectivity Specifically, frontotemporal and frontoparietal connections are thought to be functionally impaired. Diffusion tensor magnetic resonance imaging (DT–MRI) is a technique that has the potential to demonstrate structural disconnectivity in schizophrenia.AimsTo investigate the structural integrity of frontotemporal and frontoparietal white matter tracts in schizophrenia.MethodThirty patients with DSM–IV schizophrenia and thirty matched control subjects underwent DT–MRI and structural MRI. Fractional anisotropy – an index of the integrity of white matter tracts – was determined in the uncinate fasciculus, the anterior cingulum and the arcuate fasciculus and analysed using voxel-based morphometry.ResultsThere was reduced fractional anisotropy in the left uncinate fasciculus and left arcuate fasciculus in patients with schizophrenia compared with controls.ConclusionsThe findings of reduced white matter tract integrity in the left uncinate fasciculus and left arcuate fasciculus suggest that there is frontotemporal and frontoparietal structural disconnectivity in schizophrenia.


Neurosurgery ◽  
2010 ◽  
Vol 67 (4) ◽  
pp. 901-905 ◽  
Author(s):  
Florian Roser ◽  
Florian Ebner ◽  
Gottlieb Maier ◽  
Marcos Tatagiba ◽  
Thomas Nägele ◽  
...  

Abstract BACKGROUND: Syringomyelia can result in major functional disability. Conventional imaging techniques frequently fail to detect the underlying cause of syringomyelia. The prediction as to whether syringomyelia might lead to neurological deficits is still challenging. OBJECTIVE: We hypothesized that fractional anisotropy (FA) derived from diffusion tensor imaging (DTI) is a parameter to detect dynamic forms of syringomyelia. METHODS: Six patients with cervical syringomyelia, all comparable in size, shape, and location, were examined, along with 2 volunteers. Patients underwent electrophysiological recordings (somatosensory evoked potentials, motor evoked potentials, silent periods). Magnetic resonance imaging (1.5 T) was performed with a 6-element spine coil. Anatomic images were acquired with a 3-dimensional, constructive interference in steady-state sequence, and DTI with an echo-planar imaging sequence (5-mm thickness, b value 800 s/mm2) using the generalized autocalibrating partially parallel acquisitions technique. The positions were centered on the syrinx in the volunteers between the C2 and Th1. DTI data were interpolated to a spatial resolution of 0.5 mm. After calculation of a diffusion tensor in each pixel, an FA map was calculated and profiles of the FA values across the spinal cord were calculated in all slices. RESULTS: FA values were lower at the level of all examined syrinxes and reached normal values beyond them. Electrophysiological results correlated with the decrease in FA value. There were no presyrinx changes in the white matter tracts in terms of signs of FA changes beneath the syrinx. CONCLUSION: DTI of syringomyelia can demonstrate white matter fiber tracts around and beyond the syrinx consistent with electrophysiological values. DTI of the cervical spine can provide quantitative information about the pathological characteristics beyond the abnormalities visible on magnetic resonance imaging.


2020 ◽  
Vol 9 (19) ◽  
Author(s):  
Saori Nishitani ◽  
Narisa Torii ◽  
Hirohiko Imai ◽  
Ryo Haraguchi ◽  
Shigehito Yamada ◽  
...  

Background Detection of the fiber orientation pattern of the myocardium using diffusion tensor magnetic resonance imaging lags ≈12 weeks of gestational age (WGA) behind fetal myocardial remodeling with invasion by the developing coronary vasculature (8 WGA). We aimed to use diffusion tensor magnetic resonance imaging tractography to characterize the evolution of fiber architecture in the developing human heart from the later embryonic period. Methods and Results Twenty human specimens (8–24 WGA) from the Kyoto Collection of Human Embryos and Fetuses, including specimens from the embryonic period (Carnegie stages 20–23), were used. Diffusion tensor magnetic resonance imaging data were acquired with a 7T magnetic resonance system. Fractional anisotropy and helix angle were calculated using standard definitions. In all samples, the fibers ran helically in an organized pattern in both the left and right ventricles. A smooth transmural change in helix angle values (from positive to negative) was detected in all 16 directions of the ventricles. This feature was observed in almost all small (Carnegie stage 23) and large samples. A higher fractional anisotropy value was detected at the outer side of the anterior wall and septum at Carnegie stage 20 to 22, which spread around the ventricular wall at Carnegie stage 23 and in the early fetal samples (11–12 WGA). The fractional anisotropy value of the left ventricular walls decreased in samples with ≥13 WGA, which remained low (≈0.09) in larger samples. Conclusions From the human late embryonic period (from 8 WGA), the helix angle arrangement of the myocardium is comparable to that of the adult, indicating that the myocardial structure blueprint, organization, and integrity are already formed.


2019 ◽  
Vol 33 (1) ◽  
pp. 24-31
Author(s):  
Marco Perri ◽  
Marialuisa D’Elia ◽  
Giulia Castorani ◽  
Rosario Francesco Balzano ◽  
Annamaria Pennelli ◽  
...  

Objective To assess the usefulness of diffusion tensor imaging and its fractional anisotropy map along with conventional T2-weighted imaging in evaluating the anisotropic water diffusion variations of annulus fibres involved in herniation disc pathology. Materials and methods Seventy-five patients with previous medical ethics committee approval and informed consent experiencing low back pain were selected for this prospective randomised blinded trial. Lumbar disc fractional anisotropy maps were obtained acquiring diffusion tensor sequences on a 3T machine. The matrix of nucleus pulposus and structures of annulus fibres were analysed using fractional anisotropy textural features to highlight any presence of lumbar disc herniation. Observer variability and reliability between two neuroradiologists were evaluated. The χ2 test, two-tailed t test and linear regression analysis were used to focus differences in patients’ demographic data and magnetic resonance imaging findings. Results Annular fissures with extrusions were identified using diffusion tensor imaging in 10 out of 17 discs (study group) previously assessed as bulging discs using conventional magnetic resonance imaging. Eighteen extrusions out of 39 (study group) disc levels were identified on diffusion tensor imaging compared to eight extrusions highlighted on T2-weighted imaging ( P < 0.01). All eight (study group) disc extrusions evaluated on T2-weighted imaging showed annular fissures on diffusion tensor imaging. Seven out of 14 (study group) protrusions highlighted on T2-weighted imaging had no annular fissures on diffusion tensor imaging; thirty-six disc levels in the control group had no evidence of annular fissures on diffusion tensor imaging ( P > 0.01). Conclusions The addition of diffusion tensor imaging sequences and fractional anisotropy mapping to a conventional magnetic resonance imaging protocol could be useful in detecting annular fissures and lumbar disc herniation.


Sign in / Sign up

Export Citation Format

Share Document