Faculty Opinions recommendation of Clathrin adaptor AP-1 complex excludes multiple postsynaptic receptors from axons in C. elegans.

Author(s):  
Bettina Winckler ◽  
Chan Choo Yap
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Edward A Partlow ◽  
Richard W Baker ◽  
Gwendolyn M Beacham ◽  
Joshua S Chappie ◽  
Andres E Leschziner ◽  
...  

Endocytosis of transmembrane proteins is orchestrated by the AP2 clathrin adaptor complex. AP2 dwells in a closed, inactive state in the cytosol, but adopts an open, active conformation on the plasma membrane. Membrane-activated complexes are also phosphorylated, but the significance of this mark is debated. We recently proposed that NECAP negatively regulates AP2 by binding open and phosphorylated complexes (Beacham et al., 2018). Here, we report high-resolution cryo-EM structures of NECAP bound to phosphorylated AP2. The site of AP2 phosphorylation is directly coordinated by residues of the NECAP PHear domain that are predicted from genetic screens in C. elegans. Using membrane mimetics to generate conformationally open AP2, we find that a second domain of NECAP binds these complexes and cryo-EM reveals both domains of NECAP engaging closed, inactive AP2. Assays in vitro and in vivo confirm these domains cooperate to inactivate AP2. We propose that phosphorylation marks adaptors for inactivation.


2019 ◽  
Author(s):  
Edward A. Partlow ◽  
Richard W. Baker ◽  
Gwendolyn M. Beacham ◽  
Joshua S. Chappie ◽  
Andres E. Leschziner ◽  
...  

AbstractEndocytosis of transmembrane proteins is orchestrated by the AP2 clathrin adaptor complex. AP2 dwells in a closed, inactive state in the cytosol, but adopts an open, active conformation on the plasma membrane. Membrane-activated complexes are also phosphorylated, but the significance of this mark is debated. We recently proposed that NECAP negatively regulates AP2 by binding open and phosphorylated complexes (Beacham et al., 2018). Here, we report high-resolution cryo-EM structures of NECAP bound to phosphorylated AP2. The site of AP2 phosphorylation is directly coordinated by residues of the NECAP PHear domain that are predicted from genetic screens in C. elegans. Using membrane mimetics to generate conformationally open AP2, we find that a second domain of NECAP binds these complexes and cryo-EM reveals both domains of NECAP engaging closed, inactive AP2. Assays in vitro and in vivo confirm these domains cooperate to inactivate AP2. We propose that phosphorylation marks adaptors for inactivation.


2018 ◽  
Author(s):  
David M. Lipton ◽  
Celine I. Maeder ◽  
Kang Shen

SummaryAt a typical synapse, the precise juxtaposition between the active zone and postsynaptic receptors ensures local and precise neurotransmitter release and detection. Dopamine neurons release neurotransmitter more diffusely using volume-transmission, where precise pre- and post-synaptic alignment is lacking. It is unknown whether Dopaminergic presynaptic terminals have typical active zone structures and how they develop. Here we show that presynaptic terminals of the C. elegans dopaminergic neuron PDE contain bona fide AZ proteins, including SYD-2/Liprin-ʡ, ELKS-1, UNC-10/RIM and CLA-1/Piccolo. During development, synaptic vesicles (SVs) and active zone proteins (AZs) coalesce within minutes behind the advancing growth cone. Precise regulation of UNC-104/Kinesin-3-mediated SV transport through kinesin autoinhibition is required to pause transported SVs at synapses. SYD-1 and SYD-2 recruit and cluster the transiting SVs, while ELKS-1 aggregates through a distinct mechanism.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1473 ◽  
Author(s):  
Jeff Hardin

The classic cadherin-catenin complex (CCC) mediates cell-cell adhesion in metazoans. Although substantial insights have been gained by studying the CCC in vertebrate tissue culture, analyzing requirements for and regulation of the CCC in vertebrates remains challenging. Caenorhabditis elegans is a powerful system for connecting the molecular details of CCC function with functional requirements in a living organism. Recent data, using an “angstroms to embryos” approach, have elucidated functions for key residues, conserved across all metazoans, that mediate cadherin/β-catenin binding. Other recent work reveals a novel, potentially ancestral, role for the C. elegans p120ctn homologue in regulating polarization of blastomeres in the early embryo via Cdc42 and the partitioning-defective (PAR)/atypical protein kinase C (aPKC) complex. Finally, recent work suggests that the CCC is trafficked to the cell surface via the clathrin adaptor protein complex 1 (AP-1) in surprising ways. These studies continue to underscore the value of C. elegans as a model system for identifying conserved molecular mechanisms involving the CCC.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gwendolyn M Beacham ◽  
Edward A Partlow ◽  
Jeffrey J Lange ◽  
Gunther Hollopeter

Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1, the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2.


2010 ◽  
Vol 123 (22) ◽  
pp. 3966-3977 ◽  
Author(s):  
O. I. Kaplan ◽  
A. Molla-Herman ◽  
S. Cevik ◽  
R. Ghossoub ◽  
K. Kida ◽  
...  

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Sign in / Sign up

Export Citation Format

Share Document