Faculty Opinions recommendation of Long-term ozone exposure and mortality.

Author(s):  
Pier Alberto Bertazzi
Keyword(s):  
1995 ◽  
Vol 45 (1) ◽  
pp. 36-45 ◽  
Author(s):  
David L. Peterson ◽  
David G. Silsbee ◽  
Mark Poth ◽  
Michael J. Arbaugh ◽  
Frances E. Biles

2015 ◽  
Vol 35 (3) ◽  
Author(s):  
赵泽 ZHAO Ze ◽  
王鹏云 WANG Pengyun ◽  
郑有飞 ZHENG Youfei ◽  
吴荣军 WU Rongjun ◽  
张金恩 ZHANG Jin'en

1998 ◽  
Vol 138 (3) ◽  
pp. 419-432 ◽  
Author(s):  
SUSANA ELVIRA ◽  
ROCIO ALONSO ◽  
FEDERICO J. CASTILLO ◽  
BENJAMIN S. GIMENO

1995 ◽  
Vol 43 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Robert L. Winkler ◽  
Thomas S. Wallsten ◽  
Ronald G. Whitfield ◽  
Harvey M. Richmond ◽  
Stanley R. Hayes ◽  
...  
Keyword(s):  

2013 ◽  
Vol 17 (4) ◽  
pp. 243-249 ◽  
Author(s):  
Aditya K. Gupta ◽  
William C. Brintnell

Background: Ozone gas possesses antimicrobial properties against bacteria, viruses, and yeasts. Previously, we demonstrated the efficacy of ozone in killing ATCC strains of the dermatophyte fungi Trichophyton rubrum and Trichophyton mentagrophytes. Objective: To test the efficacy of ozone gas in sanitizing onychomycosis patient footwear contaminated with fungal material as a means of minimizing the risk of reinfection. Methods: Swabs of footwear from onychomycosis patients were cultured prior to and after ozone exposure to test the ability of ozone to sanitize these items. Results: We identified contamination of footwear from most onychomycosis patients, a potential source of reinfection in these individuals. Furthermore, ozone gas was effective in sanitizing contaminated footwear. Conclusion: Ozone gas is effective in sanitizing footwear and represents a novel adjunct therapy to be used in conjunction with antifungal medications and/or devices to better treat onychomycosis and tinea pedis patients in both the short and the long term.


2005 ◽  
Vol 289 (4) ◽  
pp. L627-L635 ◽  
Author(s):  
Bethany L. Yost ◽  
Gerald J. Gleich ◽  
David B. Jacoby ◽  
Allison D. Fryer

Ozone hyperreactivity over 24 h is mediated by blockade of inhibitory M2 muscarinic autoreceptors by eosinophil major basic protein. Because eosinophil populations in the lungs fluctuate following ozone, the contribution of eosinophils to M2 dysfunction and airway hyperreactivity was measured over several days. After one exposure to ozone, M2 function, vagal reactivity, smooth muscle responsiveness, and inflammation were measured in anesthetized guinea pigs. Ozone-induced hyperreactivity to vagal stimulation persisted over 3 days. Although hyperreactivity one day after ozone is mediated by eosinophils, AbVLA-4 did not inhibit either eosinophil accumulation in the lungs or around the nerves or prevent hyperreactivity at this time point. Two days after ozone, eosinophils in BAL, around airway nerves and in lungs, were decreased, and neuronal M2 receptor function was normal, although animals were still hyperreactive to vagal stimulation. Depleting eosinophils with AbIL-5 prevented hyperreactivity, thus eosinophils contribute to vagal hyperreactivity by mechanisms separate from M2 receptor blockade. Three days after ozone, vagal hyperreactivity persisted, eosinophils were again elevated in BAL in lungs and around nerves, and M2 receptors were again dysfunctional. At this point, airway smooth muscle was also hyperresponsive to methacholine. Eosinophil depletion with AbIL-5, AbVLA-4, or cyclophosphamide protected M2 function 3 days after ozone and prevented smooth muscle hyperreactivity. However, vagal hyperreactivity was significantly potentiated by eosinophil depletion. The site of hyperreactivity, muscle or nerve, changes over 3 days after a single exposure to ozone. Additionally, the role of eosinophils is complex; they mediate hyperreactivity acutely while chronically may be involved in repair.


1995 ◽  
Vol 2 (1) ◽  
pp. 25-31 ◽  
Author(s):  
David V Bates

Part 1 of this review is concerned with theoretical issues of ozone dosimetry, animal and cellular studies that illustrate the mechanism of action of ozone on living tissues, and with clinical studies. Animal studies have indicated that there are long term effects from low level long term ozone exposure. Clinical studies involve controlled ozone exposures on human subjects, both normals and asthmatics. Exercise concomitant with the ozone exposure increases the effect of the gas. It is concluded that the induction of an inflammatory response in the airway, both in the nose and in the lung, is the striking and earliest feature of ozone exposure. Current unexplained observations include: the dissociation between the inflammatory and function test response; the mechanisms of ‘adaptation’ and of airway hyperresponsiveness; and the phenomena that underlie the effect of ozone on maximal athletic performance.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 396 ◽  
Author(s):  
Alessio Giovannelli ◽  
Maria Laura Traversi ◽  
Monica Anichini ◽  
Yasutomo Hoshika ◽  
Silvano Fares ◽  
...  

High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the effect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the effect of long term O3 exposure of mature O3-sensitive hybrid poplars (‘Oxford’ clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not affect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct effect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.


2020 ◽  
Vol 189 (11) ◽  
pp. 1316-1323 ◽  
Author(s):  
Yaguang Wei ◽  
Yan Wang ◽  
Xiao Wu ◽  
Qian Di ◽  
Liuhua Shi ◽  
...  

Abstract Air pollution epidemiology studies have primarily investigated long- and short-term exposures separately, have used multiplicative models, and have been associational studies. Implementing a generalized propensity score adjustment approach with 3.8 billion person-days of follow-up, we simultaneously assessed causal associations of long-term (1-year moving average) and short-term (2-day moving average) exposure to particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), ozone, and nitrogen dioxide with all-cause mortality on an additive scale among Medicare beneficiaries in Massachusetts (2000–2012). We found that long- and short-term PM2.5, ozone, and nitrogen dioxide exposures were all associated with increased mortality risk. Specifically, per 10 million person-days, each 1-μg/m3 increase in long- and short-term PM2.5 exposure was associated with 35.4 (95% confidence interval (CI): 33.4, 37.6) and 3.04 (95% CI: 2.17, 3.94) excess deaths, respectively; each 1–part per billion (ppb) increase in long- and short-term ozone exposure was associated with 2.35 (95% CI: 1.08, 3.61) and 2.41 (95% CI: 1.81, 2.91) excess deaths, respectively; and each 1-ppb increase in long- and short-term nitrogen dioxide exposure was associated with 3.24 (95% CI: 2.75, 3.77) and 5.60 (95% CI: 5.24, 5.98) excess deaths, respectively. Mortality associated with long-term PM2.5 and ozone exposure increased substantially at low levels. The findings suggested that air pollution was causally associated with mortality, even at levels below national standards.


Sign in / Sign up

Export Citation Format

Share Document