Faculty Opinions recommendation of Molecular characteristics of travel-related extended-spectrum-beta-lactamase-producing Escherichia coli isolates from the Calgary Health Region.

Author(s):  
Philippe Lagacé-Wiens
2009 ◽  
Vol 53 (6) ◽  
pp. 2539-2543 ◽  
Author(s):  
Johann D. D. Pitout ◽  
Lorraine Campbell ◽  
Deirdre L. Church ◽  
Daniel B. Gregson ◽  
Kevin B. Laupland

ABSTRACT Extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli has recently emerged as a major risk factor for community-acquired, travel-related infections in the Calgary Health Region. Molecular characterization was done on isolates associated with infections in returning travelers using isoelectric focusing, PCR, and sequencing for bla CTX-Ms, bla TEMs, bla SHVs, bla OXAs, and plasmid-mediated quinolone resistance determinants. Genetic relatedness was determined with pulsed-field gel electrophoresis using XbaI and multilocus sequence typing (MLST). A total of 105 residents were identified; 6/105 (6%) presented with hospital-acquired infections, 9/105 (9%) with health care-associated community-onset infections, and 90/105 (86%) with community-acquired infections. Seventy-seven of 105 (73%) of the ESBL-producing E. coli isolates were positive for bla CTX-M genes; 55 (58%) produced CTX-M-15, 13 (14%) CTX-M-14, six (6%) CTX-M-24, one (1%) CTX-M-2, one (1%) CTX-M-3, and one (1%) CTX-M-27, while 10 (10%) produced TEM-52, three (3%) TEM-26, 11 (11%) SHV-2, and four (4%) produced SHV-12. Thirty-one (30%) of the ESBL-producing E. coli isolates were positive for aac(6′)-Ib-cr, and one (1%) was positive for qnrS. The majority of the ESBL-producing isolates (n = 95 [90%]) were recovered from urine samples, and 83 (87%) were resistant to ciprofloxacin. The isolation of CTX-M-15 producers belonging to clone ST131 was associated with travel to the Indian subcontinent (India, Pakistan), Africa, the Middle East, and Europe, while clonally unrelated strains of CTX-M-14 and -24 were associated with travel to Asia. Our study suggested that clone ST131 coproducing CTX-M-15, OXA-1, TEM-1, and AAC(6′)-Ib-cr and clonally unrelated CTX-M-14 producers have emerged as important causes of community-acquired, travel-related infections.


1970 ◽  
Vol 4 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Iraj Alipourfard ◽  
Nilufar Yeasmin Nili

Extended spectrum beta-lactmase (ESBL) producing organisms create a major problem for clinical therapeutics. The frequency of ESBL producing strains among clinical isolates has been steadily increasing over the past few years resulting in limitation of the therapeutic options. These resistant bacteria are emerging world wide as a threat to human health in both the community and hospital settings. -lactamase production by several organisms is the most important mechanism of resistance to beta-lactam antibiotics, such as penicillins and cephalosporins. This study was done to determine the susceptibility of different antimicrobials to ESBL producing Escherichia coli and Klebsiella pneumoniae isolated from wound swabs, blood, urine, fluid, tracheal aspirates and sputum in Shahid Bahonar Hospital of Tehran from July, 2007 to June, 2008. A total of 115 ESBLproducing isolates were obtained from outdoor and indoor patients. Out of 115 isolates, 60% were E. coli and 40% were K. pneumoniae. All ESBL-producing isolates were confirmed using the Clinical and Laboratory Standards Institute (CLSI)-approved double-disk diffusion method. 29.6% of these isolates were collected from medical wards and 24.3% were collected from outdoor. Urine (70.4%) was the main source of ESBL-producing isolates from all patients, followed by blood (16.5%). All isolates were susceptible to both imipenem and meropenem. Of all isolates, 93.9% were susceptible to amikacin. The cephalosporins (1-4 generations) were almost 100% resistant. For Nitrofurantoin, 57.4% were sensitive. High rate resistance (74.8%) was observed to all quinolones tested. Aztreonam, Ampicillin, Co-amoxyclav and Ampicillin/Sulbactam were 100% resistant. This study shows that the frequency of ESBL producing strains of E. coli and K. pneumoniae is high in both hospital and community levels and it has a significant implication for patients’ management. Advance drug resistance surveillance and molecular characteristics of ESBL isolates is necessary to guide the appropriate and judicious antibiotic use. Key words: Extended spectrum beta-lactamase (ESBL), Drug sensitivity, Escherichia coli, Klebseilla pneumoniae DOI: http://dx.doi.org/10.3329/bjmm.v4i1.8467 BJMM 2011; 4(1): 32-36  


2004 ◽  
Vol 48 (4) ◽  
pp. 1204-1214 ◽  
Author(s):  
Michael R. Mulvey ◽  
Elizabeth Bryce ◽  
David Boyd ◽  
Marianna Ofner-Agostini ◽  
Sara Christianson ◽  
...  

ABSTRACT This report describes a study carried out to gain baseline information on the molecular characteristics of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp. in Canada. A total of 29,323 E. coli and 5,156 Klebsiella sp. isolates were screened at 12 participating sites. Of these, 505 clinically significant, nonrepeat isolates displaying reduced susceptibility to the NCCLS-recommended beta-lactams were submitted to a central laboratory over a 1-year period ending on 30 September 2000. A total of 116 isolates were confirmed to be ESBL producers. PCR and sequence analysis revealed the presence of TEM-11 (n = 1), TEM-12 (n = 1), TEM-29 (n = 1), TEM-52 (n = 4), CTX-M-13 (n = 1), CTX-M-14 (n = 15), CTX-M-15 (n = 11), SHV-2 (n = 2), SHV-2a (n = 12), SHV-5 (n = 6), SHV-12 (n = 45), and SHV-30 (n = 2). Five novel beta-lactamases were identified and designated TEM-115 (n = 2), TEM-120 (n = 1), SHV-40 (n = 2), SHV-41 (n = 4), and SHV-42 (n = 1). In addition, no molecular mechanism was identified for five isolates displaying an ESBL phenotype. Macrorestriction analysis of all ESBL isolates was conducted, as was restriction fragment length polymorphism analysis of plasmids harboring ESBLs. Although a “clonal” distribution of isolates was observed at some individual sites, there was very little evidence suggesting intrahospital spread. In addition, examples of identical or closely related plasmids that were identified at geographically distinct sites across Canada are given. However, there was considerable diversity with respect to plasmid types observed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gopalan Krishnan Sivaraman ◽  
Vineeth Rajan ◽  
Ardhra Vijayan ◽  
Ravikrishnan Elangovan ◽  
Alison Prendiville ◽  
...  

This study was undertaken to evaluate the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in selected shrimp aquaculture farms (n = 37) in Kerala, South India and to characterize the isolates using molecular tools. Overall, a low prevalence of ESBL-producers was found in the farms, most likely due to the reduced antibiotic usage in the shrimp farming sector. Out of the 261 samples (77 shrimp and 92 each of water and sediment), 14 (5.4%) tested positive for ESBL-E. coli or ESBL-K. pneumoniae. A total of 32 ESBL-E. coli and 15 ESBL- K. pneumoniae were recovered from these samples. All ESBL isolates were cefotaxime-resistant with minimal inhibitory concentration (MIC) ≥32 μg/ml. Of all isolates, 9 (28.1%) E. coli and 13 (86.7%) K. pneumoniae showed simultaneous resistance to tetracycline, ciprofloxacin, and trimethoprim-sulfamethoxazole. PCR analysis identified CTX-M group 1 (blaCTX–M–15) as the predominant ESBL genotype in both E. coli (23, 71.9%) and K. pneumoniae (15, 100%). Other beta-lactamase genes detected were as follows: blaTEM and blaSHV (11 K. pneumoniae), blaCTX–M group 9 (9 E. coli), and blaCMY–2 (2 E. coli). Further screening for AMR genes identified tetA and tetB (13, 40.6%), sul1 (11, 34.4%), sul2 (9, 28.1%), catA and cmlA (11, 34.4%), qepA and aac(6′)-Ib-cr (9, 28.1%) and strAB and aadA1 (2, 6.3%) in E. coli, and qnrB (13, 86.7%), qnrS (3, 20%), oqxB (13, 86.7%), tetA (13, 86.7%), and sul2 (13, 86.7%) in K. pneumoniae isolates. Phylogenetic groups identified among E. coli isolates included B1 (4, 12.5%), B2 (6, 18.8%), C (10, 31.3%), D (3, 9.4%), and E (9, 28.1%). PCR-based replicon typing (PBRT) showed the predominance of IncFIA and IncFIB plasmids in E. coli; however, in K. pneumoniae, the major replicon type detected was IncHI1. Invariably, all isolates of K. pneumoniae harbored virulence-associated genes viz., iutA, entB, and mrkD. Epidemiological typing by pulsed-field gel electrophoresis (PFGE) revealed that E. coli isolates recovered from different farms were genetically unrelated, whereas isolates of K. pneumoniae showed considerable genetic relatedness. In conclusion, our findings provide evidence that shrimp aquaculture environments can act as reservoirs of multi-drug resistant E. coli and K. pneumoniae.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


Sign in / Sign up

Export Citation Format

Share Document