Faculty Opinions recommendation of FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation.

Author(s):  
Vishva Dixit ◽  
Kim Newton
Nature ◽  
2011 ◽  
Vol 477 (7364) ◽  
pp. 330-334 ◽  
Author(s):  
Patrick-Simon Welz ◽  
Andy Wullaert ◽  
Katerina Vlantis ◽  
Vangelis Kondylis ◽  
Vanesa Fernández-Majada ◽  
...  

Immunity ◽  
2016 ◽  
Vol 44 (3) ◽  
pp. 553-567 ◽  
Author(s):  
Katerina Vlantis ◽  
Andy Wullaert ◽  
Apostolos Polykratis ◽  
Vangelis Kondylis ◽  
Marius Dannappel ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A517-A517
Author(s):  
A MIZOGUCHI ◽  
E MIZOGUCHI ◽  
Y DEJONG ◽  
H TAKEDATSU ◽  
F PREFFER ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2602
Author(s):  
Emilie Viennois ◽  
Benoit Chassaing

Inflammation is a well-characterized critical driver of gastrointestinal cancers. Previous findings have shown that intestinal low-grade inflammation can be promoted by the consumption of select dietary emulsifiers, ubiquitous component of processed foods which alter the composition and function of the gut microbiota. Using a model of colitis-associated cancer, we previously reported that consumption of the dietary emulsifiers carboxymethylcellulose or polysorbate-80 exacerbated colonic tumor development. Here, we investigate the impact of dietary emulsifiers consumption on cancer initiation and progression in a genetical model of intestinal adenomas. In APCmin mice, we observed that dietary emulsifiers consumption enhanced small-intestine tumor development in a way that appeared to be independent of chronic intestinal inflammation but rather associated with emulsifiers’ impact on the proliferative status of the intestinal epithelium as well as on intestinal microbiota composition in both male and female mice. Overall, our findings further support the hypothesis that emulsifier consumption may be a new modifiable risk factor for colorectal cancer (CRC) and that alterations in host–microbiota interactions can favor gastrointestinal carcinogenesis in individuals with a genetical predisposition to such disorders.


2008 ◽  
Vol 43 (11) ◽  
pp. 858-865 ◽  
Author(s):  
Takashi Ohama ◽  
Masatoshi Hori ◽  
Masahiko Fujisawa ◽  
Masaharu Kiyosue ◽  
Masaki Hashimoto ◽  
...  

2008 ◽  
Vol 190 (19) ◽  
pp. 6398-6408 ◽  
Author(s):  
Torsten Sterzenbach ◽  
Lucie Bartonickova ◽  
Wiebke Behrens ◽  
Birgit Brenneke ◽  
Jessika Schulze ◽  
...  

ABSTRACT The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.


Sign in / Sign up

Export Citation Format

Share Document