Faculty Opinions recommendation of A physical interaction network of dengue virus and human proteins.

Author(s):  
Subhash Vasudevan ◽  
Moon Tay Yue Feng
2011 ◽  
Vol 10 (12) ◽  
pp. M111.012187 ◽  
Author(s):  
Sudip Khadka ◽  
Abbey D. Vangeloff ◽  
Chaoying Zhang ◽  
Prasad Siddavatam ◽  
Nicholas S. Heaton ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
pp. 20-33
Author(s):  
Lydia-Eirini Giannakou ◽  
Athanasios-Stefanos Giannopoulos ◽  
Chrissi Hatzoglou ◽  
Konstantinos I. Gourgoulianis ◽  
Erasmia Rouka ◽  
...  

Haemophilus influenzae (Hi), Moraxella catarrhalis (MorCa) and Pseudomonas aeruginosa (Psa) are three of the most common gram-negative bacteria responsible for human respiratory diseases. In this study, we aimed to identify, using the functional enrichment analysis (FEA), the human gene interaction network with the aforementioned bacteria in order to elucidate the full spectrum of induced pathogenicity. The Human Pathogen Interaction Database (HPIDB 3.0) was used to identify the human proteins that interact with the three pathogens. FEA was performed via the ToppFun tool of the ToppGene Suite and the GeneCodis database so as to identify enriched gene ontologies (GO) of biological processes (BP), cellular components (CC) and diseases. In total, 11 human proteins were found to interact with the bacterial pathogens. FEA of BP GOs revealed associations with mitochondrial membrane permeability relative to apoptotic pathways. FEA of CC GOs revealed associations with focal adhesion, cell junctions and exosomes. The most significantly enriched annotations in diseases and pathways were lung adenocarcinoma and cell cycle, respectively. Our results suggest that the Hi, MorCa and Psa pathogens could be related to the pathogenesis and/or progression of lung adenocarcinoma via the targeting of the epithelial cellular junctions and the subsequent deregulation of the cell adhesion and apoptotic pathways. These hypotheses should be experimentally validated.


2005 ◽  
Vol 79 (11) ◽  
pp. 6631-6643 ◽  
Author(s):  
Diego E. Alvarez ◽  
María F. Lodeiro ◽  
Silvio J. Ludueña ◽  
Lía I. Pietrasanta ◽  
Andrea V. Gamarnik

ABSTRACT Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5′ and 3′ ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy reveled that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5′ and 3′ CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5′ and 3′ untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5′ and 3′ UAR (upstream AUG region). In order to investigate the functional role of 5′-3′ UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5′ or 3′ UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication.


2011 ◽  
Vol 79 (11) ◽  
pp. 4413-4424 ◽  
Author(s):  
Huiying Yang ◽  
Yuehua Ke ◽  
Jian Wang ◽  
Yafang Tan ◽  
Sebenzile K. Myeni ◽  
...  

ABSTRACTAYersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66Y. pestisbait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted byY. pestiswere significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted byY. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted byY. pestisare highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance ofY. pestisto phagocytosis. Interference with TLR and MAPK signaling pathways byY. pestisreflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting withY. pestis(16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibitin vitroactin assembly mediated by VASP.


2014 ◽  
Vol 95 (12) ◽  
pp. 2668-2676 ◽  
Author(s):  
Vivian Huerta ◽  
Patricia Toledo ◽  
Noralvis Fleitas ◽  
Alejandro Martín ◽  
Dianne Pupo ◽  
...  

Based on the hypothesis that interactions between virions and serum components may influence the outcome of dengue virus (DENV) infections, we decided to use affinity chromatography with domain III from the envelope (E) protein of DENV2 (DIIIE2) as a ligand to isolate virus-binding proteins from human plasma. This approach yielded serum amyloid P (SAP) and α2-macroglobulin (α2M) as novel viral interactors. After confirming the specific binding of both SAP and α2M to DIIIE2 by ELISA, the latter interaction was examined in greater detail. We obtain evidence suggesting that the binding species was actually the receptor-activated form of α2M (α2M*), that α2M* could bind monovalently to recombinant domain III from all four DENV serotypes with affinities in the micromolar range ranking as DENV4>DENV1~DENV2>DENV3 and that this interaction exhibited a strong avidity effect when multivalent binding was favoured (K D 8×10−8 M for DIIIE2). We also showed that α2M* bound to DENV virions of the four serotypes, protecting the virus from temperature-induced inactivation in the absence of serum and enhancing infectivity. The latter effect exhibited an ED50 of 2.9×10−8 M, also suggesting an avidity effect due to multivalent binding. These results will further contribute to the characterization of the virus–host factor interaction network during human DENV infection.


2015 ◽  
Vol 2 (4) ◽  
pp. 140252 ◽  
Author(s):  
Vince I. Grolmusz

Diabetes is a growing concern for the developed nations worldwide. New genomic, metagenomic and gene-technologic approaches may yield considerable results in the next several years in its early diagnosis, or in advances in therapy and management. In this work, we highlight some human proteins that may serve as new targets in the early diagnosis and therapy. With the help of a very successful mathematical tool for network analysis that formed the basis of the early successes of Google TM , Inc., we analyse the human protein–protein interaction network gained from the IntAct database with a mathematical algorithm. The novelty of our approach is that the new protein targets suggested do not have many interacting partners (so, they are not hubs or super-hubs), so their inhibition or promotion probably will not have serious side effects. We have identified numerous possible protein targets for diabetes therapy and/or management; some of these have been well known for a long time (these validate our method), some of them appeared in the literature in the last 12 months (these show the cutting edge of the algorithm), and the remainder are still unknown to be connected with diabetes, witnessing completely new hits of the method.


2004 ◽  
Vol 24 (13) ◽  
pp. 6084-6093 ◽  
Author(s):  
Jen-Yeu Wang ◽  
Altaf Hossain Sarker ◽  
Priscilla K. Cooper ◽  
Michael R. Volkert

ABSTRACT Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Saccharomyces cerevisiae mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide-induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub1Δ mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show that XPG recruits PC4 to a bubble-containing DNA substrate with a resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.


2012 ◽  
Vol 40 (4) ◽  
pp. 778-783 ◽  
Author(s):  
Wazeer Varsally ◽  
Saverio Brogna

UPF1 (up-frameshift 1) is a protein conserved in all eukaryotes that is necessary for NMD (nonsense-mediated mRNA decay). UPF1 mainly localizes to the cytoplasm and, via mechanisms that are linked to translation termination but not yet well understood, stimulates rapid destruction of mRNAs carrying a PTC (premature translation termination codon). However, some studies have indicated that in human cells UPF1 has additional roles, possibly unrelated to NMD, which are carried out in the nucleus. These might involve telomere maintenance, cell cycle progression and DNA replication. In the present paper, we review the available experimental evidence implicating UPF1 in nuclear functions. The unexpected view that emerges from this literature is that the nuclear functions primarily stem from UPF1 having an important role in DNA replication, rather than NMD affecting the expression of proteins involved in these processes. Our bioinformatics survey of the interaction network of UPF1 with other human proteins, however, highlights that UPF1 also interacts with proteins associated with nuclear RNA degradation and transcription termination; therefore suggesting involvement in processes that could also impinge on DNA replication indirectly.


Sign in / Sign up

Export Citation Format

Share Document