Faculty Opinions recommendation of Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity.

Author(s):  
Asher Cutter
2012 ◽  
Vol 44 (3) ◽  
pp. 285-290 ◽  
Author(s):  
Erik C Andersen ◽  
Justin P Gerke ◽  
Joshua A Shapiro ◽  
Jonathan R Crissman ◽  
Rajarshi Ghosh ◽  
...  

Author(s):  
Gaotian Zhang ◽  
Jake D Mostad ◽  
Erik C Andersen

Abstract Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g. a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. Additionally, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.


2017 ◽  
Vol 114 (7) ◽  
pp. 1613-1618 ◽  
Author(s):  
Kiwoong Nam ◽  
Kasper Munch ◽  
Thomas Mailund ◽  
Alexander Nater ◽  
Maja Patricia Greminger ◽  
...  

Quantifying the number of selective sweeps and their combined effects on genomic diversity in humans and other great apes is notoriously difficult. Here we address the question using a comparative approach to contrast diversity patterns according to the distance from genes in all great ape taxa. The extent of diversity reduction near genes compared with the rest of intergenic sequences is greater in a species with larger effective population size. Also, the maximum distance from genes at which the diversity reduction is observed is larger in species with large effective population size. In Sumatran orangutans, the overall genomic diversity is ∼30% smaller than diversity levels far from genes, whereas this reduction is only 9% in humans. We show by simulation that selection against deleterious mutations in the form of background selection is not expected to cause these differences in diversity among species. Instead, selective sweeps caused by positive selection can reduce diversity level more severely in a large population if there is a higher number of selective sweeps per unit time. We discuss what can cause such a correlation, including the possibility that more frequent sweeps in larger populations are due to a shorter waiting time for the right mutations to arise.


2018 ◽  
Author(s):  
Alexandre M. Harris ◽  
Nandita R. Garud ◽  
Michael DeGiorgio

AbstractPositive natural selection can lead to a decrease in genomic diversity at the selected site and at linked sites, producing a characteristic signature of elevated expected haplotype homozygosity. These selective sweeps can be hard or soft. In the case of a hard selective sweep, a single adaptive haplotype rises to high population frequency, whereas multiple adaptive haplotypes sweep through the population simultaneously in a soft sweep, producing distinct patterns of genetic variation in the vicinity of the selected site. Measures of expected haplotype homozygosity have previously been used to detect sweeps in multiple study systems. However, these methods are formulated for phased haplotype data, typically unavailable for nonmodel organisms, and may have reduced power to detect soft sweeps due to their increased genetic diversity relative to hard sweeps. To address these limitations, we applied the H12 and H2/H1 statistics of Garud et al. [2015] to unphased multilocus genotypes, denoting them as G12 and G2/G1. G12 (and the more direct expected homozygosity analogue to H12, denoted G123) has comparable power to H12 for detecting both hard and soft sweeps. G2/G1 can be used to classify hard and soft sweeps analogously to H2/H1, conditional on a genomic region having high G12 or G123 values. The reason for this power is that under random mating, the most frequent haplotypes will yield the most frequent multilocus genotypes. Simulations based on parameters compatible with our recent understanding of human demographic history suggest that expected homozygosity methods are best suited for detecting recent sweeps, and increase in power under recent population expansions. Finally, we find candidates for selective sweeps within the 1000 Genomes CEU, YRI, GIH, and CHB populations, which corroborate and complement existing studies.


2019 ◽  
Author(s):  
Timothy A. Crombie ◽  
Stefan Zdraljevic ◽  
Daniel E. Cook ◽  
Robyn E. Tanny ◽  
Shannon C. Brady ◽  
...  

AbstractRecent efforts to understand the natural niche of the keystone model organism Caenorhabditis elegans have suggested that this species is cosmopolitan and associated with rotting vegetation and fruits. However, most of the strains isolated from nature have low genetic diversity likely because recent chromosome-scale selective sweeps contain alleles that increase fitness in human-associated habitats. Strains from the Hawaii Islands are highly divergent from non-Hawaiian strains. This result suggests that Hawaiian strains might contain ancestral genetic diversity that was purged from most non-Hawaiian strains by the selective sweeps. To characterize the genetic diversity and niche of Hawaiian C. elegans, we sampled across the Hawaiian Islands and isolated 100 new C. elegans strains. We found that C. elegans strains are not associated with any one substrate but are found in cooler climates at high elevations. These Hawaiian strains are highly diverged compared to the rest of the global population. Admixture analysis identified 11 global populations, four of which are from Hawaii. Surprisingly, one of the Hawaiian populations shares recent ancestry with non-Hawaiian populations, including portions of globally swept haplotypes. This discovery provides the first evidence of gene flow between Hawaiian and non-Hawaiian populations. Most importantly, the high levels of diversity observed in Hawaiian strains might represent the complex patterns of ancestral genetic diversity in the C. elegans species before human influence.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Orçun Haçariz ◽  
Charles Viau ◽  
Farial Karimian ◽  
Jianguo Xia

Abstract Background A healthy microbiome influences host physiology through a mutualistic relationship, which can be important for the host to cope with cellular stress by promoting fitness and survival. The mammalian microbiome is highly complex and attributing host phenotypes to a specific member of the microbiome can be difficult. The model organism Caenorhabditis elegans and its native microbiome, discovered recently, can serve as a more tractable, experimental model system to study host-microbiome interactions. In this study, we investigated whether certain members of C. elegans native microbiome would offer a benefit to their host and putative molecular mechanisms using a combination of phenotype screening, omics profiling and functional validation. Results A total of 16 members of C. elegans microbiome were screened under chemically-induced toxicity. Worms grown with Chryseobacterium sp. CHNTR56 MYb120 or Comamonas sp. 12022 MYb131, were most resistant to oxidative chemical stress (SiO2 nanoparticles and juglone), as measured by progeny output. Further investigation showed that Chryseobacterium sp. CHNTR56 positively influenced the worm’s lifespan, whereas the combination of both isolates had a synergistic effect. RNAseq analysis of young adult worms, grown with either isolate, revealed the enrichment of cellular detoxification mechanisms (glutathione metabolism, drug metabolism and metabolism of xenobiotics) and signaling pathways (TGF-beta and Wnt signaling pathways). Upregulation of cysteine synthases (cysl genes) in the worms, associated with glutathione metabolism, was also observed. Nanopore sequencing uncovered that the genomes of the two isolates have evolved to favor the specific route of the de novo synthesis pathway of vitamin B6 (cofactor of cysl enzymes) through serC or pdxA2 homologs. Finally, co-culture with vitamin B6 extended worm lifespan. Conclusions In summary, our study indicates that certain colonizing members of C. elegans have genomic diversity in vitamin B6 synthesis and promote host fitness and lifespan extension. The regulation of host cellular detoxification genes (i.e. gst) along with cysl genes at the transcriptome level and the bacterium-specific vitamin B6 synthesis mechanism at the genome level are in an agreement with enhanced host glutathione-based cellular detoxification due to this interspecies relationship. C. elegans is therefore a promising alternative model to study host-microbiome interactions in host fitness and lifespan.


2010 ◽  
Vol 20 (12) ◽  
pp. 1663-1671 ◽  
Author(s):  
D. R. Denver ◽  
D. K. Howe ◽  
L. J. Wilhelm ◽  
C. A. Palmer ◽  
J. L. Anderson ◽  
...  

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document