Faculty Opinions recommendation of A thermosensory pathway mediating heat-defense responses.

Author(s):  
Jonathan Dostrovsky
Keyword(s):  
Author(s):  
Parasakthi N ◽  
Deepika R ◽  
Sivanathan C ◽  
Abubackkar Sithiq PD ◽  
Venkateshan N

Pain and inflammation are the basic defense responses of the body that the result of the injury and any other damage to the body. During the years the concerns were raised towards the inflammation that is caused to the oxidative damage that is resulted in the physiological stress due to oxidation. There are a lot of drugs that are used to treat the condition effectively and the typical examples are NSAID’s and SAID’s which have a noted mechanism to show the anti-inflammatory activity. They have serious problems with the side effects like Gastrointestinal irritation, Gastric pain, Gastric perforations and peptic ulcers. Herbs have been used as better alternatives that are used to treat diseases. The significance of the medicinal plants had been emphasized significantly in tradition rich countries like India and all over the world. The research proof of those herbs for their activities and their traditional claims were proven. Poly Herbal Gels were prepared using the root extracts of the plant Corchorus olitorius. The gels were prepared using the Carbopol 940 and the prepared gels were investigated for their anti-inflammatory property and the gels showed a significantly better activity compared to the plant extract and the standard drug too. The addition of other drugs in to the gels added and advantage to the increase in the activity and faster onset of action as the gel was applied directly in the place of the inflammation.


2019 ◽  
Vol 26 (10) ◽  
pp. 720-742 ◽  
Author(s):  
Kaushik Das ◽  
Karabi Datta ◽  
Subhasis Karmakar ◽  
Swapan K. Datta

Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.


2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


Sign in / Sign up

Export Citation Format

Share Document