Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens

2019 ◽  
Vol 26 (10) ◽  
pp. 720-742 ◽  
Author(s):  
Kaushik Das ◽  
Karabi Datta ◽  
Subhasis Karmakar ◽  
Swapan K. Datta

Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.

2020 ◽  
Vol 21 (5) ◽  
pp. 527-541 ◽  
Author(s):  
Marcella Nunes Melo-Braga ◽  
Flávia De Marco Almeida ◽  
Daniel Moreira dos Santos ◽  
Joaquim Teixeira de Avelar Júnior ◽  
Pablo Victor Mendes dos Reis ◽  
...  

Antimicrobial peptides (AMPs) have been found in all organism taxa and may play an essential role as a host defense system. AMPs are organized in various conformations, such as linear peptides, disulfide bond-linked peptides, backbone-linked peptides and circular peptides. AMPs apparently act primarily on the plasma membrane, although an increasing number of works have shown that they may also target various intracellular sites. Spider venoms are rich sources of biomolecules that show several activities, including modulation or blockage of ion channels, anti-insect, anti-cancer, antihypertensive and antimicrobial activities, among others. In spider venoms from the Lycosidae family there are many linear AMPs with a wide range of activities against several microorganisms. Due to these singular activities, some Lycosidae AMPs have been modified to improve or decrease desirable or undesirable effects, respectively. Such modifications, especially with the aim of increasing their antibiotic activity, have led to the filing of many patent applications. This review explores the abundance of Lycosidae venom AMPs and some of their derivatives, and their use as new drug models.


2020 ◽  
Vol 58 (8) ◽  
pp. 1073-1084
Author(s):  
Martin van Eijk ◽  
Stephanie Boerefijn ◽  
Lida Cen ◽  
Marisela Rosa ◽  
Marnix J H Morren ◽  
...  

Abstract Fungal infections in humans are increasing worldwide and are currently mostly treated with a relative limited set of antifungals. Resistance to antifungals is increasing, for example, in Aspergillus fumigatus and Candida auris, and expected to increase for many medically relevant fungal species in the near future. We have developed and patented a set of cathelicidin-inspired antimicrobial peptides termed ‘PepBiotics’. These peptides were initially selected for their bactericidal activity against clinically relevant Pseudomonas aeruginosa and Staphylococcus aureus isolates derived from patients with cystic fibrosis and are active against a wide range of bacteria (ESKAPE pathogens). We now report results from studies that were designed to investigate the antifungal activity of PepBiotics against a set of medically relevant species encompassing species of Aspergillus, Candida, Cryptococcus, Fusarium, Malassezia, and Talaromyces. We characterized a subset of PepBiotics and show that these peptides strongly affected metabolic activity and/or growth of a set of medically relevant fungal species, including azole-resistant A. fumigatus isolates. PepBiotics showed a strong inhibitory activity against a large variety of filamentous fungi and yeasts species at low concentrations (≤1 μM) and were fungicidal for at least a subset of these fungal species. Interestingly, the concentration of PepBiotics required to interfere with growth or metabolic activity varied between different fungal species or even between isolates of the same fungal species. This study shows that PepBiotics display strong potential for use as novel antifungal compounds to fight a large variety of clinically relevant fungal species.


2012 ◽  
Vol 610-613 ◽  
pp. 3511-3517 ◽  
Author(s):  
Jia Man Sun ◽  
Jun Fan Fu ◽  
Ru Jun Zhou ◽  
Wei Na Su ◽  
Xue Rui Yan

Cylindrocarpon root rot, caused by Cylindrocarpon destructans, is a severe disease on ginseng (Panax ginseng C.A. Meyer) in northeast China. Methyl jasmonate (MeJA) has been studied for its ability to induce plant defenses against pathogens. The effects of MeJA on the colony diameter of C. destructans and seedling growth were examined in vitro. Two-year-old ginseng roots were drenched with MeJA (200 mg/L) and then inoculated with conidia suspension of C. destructans (1×106 conidia/ml). Disease severity was assessed on inoculated roots, and the activation of defense responses was also measured. Results showed that MeJA had no effect on the growth of C. destructans and seedlings at low concentrations. The incidence rate and disease severity on MeJA-treated ginseng roots was significantly reduced compared with untreated roots. The proline content was increased but the malondialdehyde (MDA) content decreased in MeJA- treated roots. The activities of phenylalanine amino-lyase (PAL), catalase (CAT), peroxidase (POD) and polyphenoloxidase (PPO) were significantly enhanced in treated roots. It was concluded that low concentrations of MeJA had no effect on C. destructans, but it stimulated the activities of defense enzymes in treated ginseng roots and alleviated the damage of roots from C. destructans. Therefore, the control of Cylindrocarpon root rot by MeJA may involve the activation of the disease-related defense system.


2018 ◽  
Vol 475 (21) ◽  
pp. 3359-3375 ◽  
Author(s):  
Marcelo Lattarulo Campos ◽  
Luciano Morais Lião ◽  
Eliane Santana Fernandes Alves ◽  
Ludovico Migliolo ◽  
Simoni Campos Dias ◽  
...  

Among the numerous strategies plants have developed to fend off enemy attack, antimicrobial peptides (AMPs) stand out as one of the most prominent defensive barriers that grant direct and durable resistance against a wide range of pests and pathogens. These small proteins are characterized by a compact structure and an overall positive charge. AMPs have an ancient origin and widespread occurrence in the plant kingdom but show an unusually high degree of variation in their amino acid sequences. Interestingly, there is a strikingly conserved topology among the plant AMP families, suggesting that the defensive properties of these peptides are not determined by their primary sequences but rather by their tridimensional structure. To explore and expand this idea, we here discuss the role of AMPs for plant defense from a structural perspective. We show how specific structural properties, such as length, charge, hydrophobicity, polar angle and conformation, are essential for plant AMPs to act as a chemical shield that hinders enemy attack. Knowledge on the topology of these peptides is facilitating the isolation, classification and even structural redesign of AMPs, thus allowing scientists to develop new peptides with multiple agronomical and pharmacological potential.


2020 ◽  
Vol 16 (4) ◽  
pp. 537-542
Author(s):  
Zhigacheva Irina ◽  
Volodkin Aleksandr ◽  
Rasulov Maksud

Background: One of the main sources of ROS in stress conditions is the mitochondria. Excessive generation of ROS leads to oxidation of thiol groups of proteins, peroxidation of membrane lipids and swelling of the mitochondria. In this regard, there is a need to search for preparationsadaptogens that increase the body's resistance to stress factors. Perhaps, antioxidants can serve as such adaptogens. This work aims at studying the effect of antioxidant; the potassium anphen in a wide range of concentrations on the functional state of 6 day etiolated pea seedlings mitochondria (Pisum sativum L). Methods: The functional state of mitochondria was studied per rates of mitochondria respiration, by the level of lipid peroxidation and study of fatty acid composition of mitochondrial membranes by chromatography technique. Results: Potassium anphen in concentrations of 10-5 - 10-8 M and 10-13-10-16 prevented the activation of LPO in the mitochondrial membranes of pea seedlings, increased the oxidation rates of NAD-dependent substrates and succinate in the respiratory chain of mitochondria that probably pointed to the anti-stress properties of the drug. Indeed, the treatment of pea seeds with the preparation in concentrations of 10-13 M prevented the inhibition of growth of seedlings in conditions of water deficiency. Conclusion: It is assumed that the dose dependence of the biological effects of potassium anphen and the manifestation of these effects in ultra-low concentrations are due to its ability in water solutions to form a hydrate containing molecular ensembles (structures).


2021 ◽  
Vol 13 (15) ◽  
pp. 8620
Author(s):  
Sanaz Salehi ◽  
Kourosh Abdollahi ◽  
Reza Panahi ◽  
Nejat Rahmanian ◽  
Mozaffar Shakeri ◽  
...  

Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 355
Author(s):  
Unai Caballero ◽  
Sarah Kim ◽  
Elena Eraso ◽  
Guillermo Quindós ◽  
Valvanera Vozmediano ◽  
...  

Candida auris is an emergent fungal pathogen that causes severe infectious outbreaks globally. The public health concern when dealing with this pathogen is mainly due to reduced susceptibility to current antifungal drugs. A valuable alternative to overcome this problem is to investigate the efficacy of combination therapy. The aim of this study was to determine the in vitro interactions of isavuconazole with echinocandins against C. auris. Interactions were determined using a checkerboard method, and absorbance data were analyzed with different approaches: the fractional inhibitory concentration index (FICI), Greco universal response surface approach, and Bliss interaction model. All models were in accordance and showed that combinations of isavuconazole with echinocandins resulted in an overall synergistic interaction. A wide range of concentrations within the therapeutic range were selected to perform time-kill curves. These confirmed that isavuconazole–echinocandin combinations were more effective than monotherapy regimens. Synergism and fungistatic activity were achieved with combinations that included isavuconazole in low concentrations (≥0.125 mg/L) and ≥1 mg/L of echinocandin. Time-kill curves revealed that once synergy was achieved, combinations of higher drug concentrations did not improve the antifungal activity. This work launches promising results regarding the combination of isavuconazole with echinocandins for the treatment of C. auris infections.


1995 ◽  
Vol 108 (4) ◽  
pp. 1353-1358 ◽  
Author(s):  
W. F. Broekaert ◽  
FRG. Terras ◽  
BPA. Cammue ◽  
R. W. Osborn

2017 ◽  
Vol 37 (4) ◽  
pp. 368-378 ◽  
Author(s):  
Jusciêne B. Moura ◽  
Agueda C. de Vargas ◽  
Gisele V. Gouveia ◽  
João J. de S. Gouveia ◽  
Juracy C. Ramos-Júnior ◽  
...  

ABSTRACT: Cladonia substellata Vainio is a lichen found in different regions of the world, including the Northeast of Brazil. It contains several secondary metabolites with biological activity, including usnic acid, which has exhibited a wide range of biological activities. The aim of this study was to evaluate the in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid. Initially, Staphylococcus spp., derived from samples of skin and ears of dogs and cats with suspected pyoderma and otitis, were isolated and analyzed. In antimicrobial susceptibility testing against Staphylococcus spp., 77% (105/136) of the isolates were resistant to the antimicrobials tested. In the assessment of biofilm production, 83% (113/136) were classified as producing biofilm. In genetic characterization, 32% (44/136) were positive for blaZ, no isolate (0/136) was positive for the mecA gene, and 2% (3/136) were positive for the icaD gene. The in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid against Staphylococcus spp. ranged from 0.25mg/mL to 0.0019mg/mL, inhibiting bacterial growth at low concentrations. The substances were more effective against biofilm-producing bacteria (0.65mg/mL-0.42mg/mL) when compared to non-biofilm producing bacteria (2.52mg/mL-2.71mg/mL). Usnic acid and the organic extract of C. substellata can be effective in the treatment of pyoderma and otitis in dogs and cats caused by Staphylococcus spp.


2010 ◽  
Vol 6 ◽  
pp. 1079-1088 ◽  
Author(s):  
Peter C Griffiths ◽  
David W Knight ◽  
Ian R Morgan ◽  
Amy Ford ◽  
James Brown ◽  
...  

Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,β-dihydroxy ester)s are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5–50 mg ml−1, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration). A range of neutron techniques – in particular small-angle neutron scattering (SANS) – have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,β-dihydroxy ester) motif, with SANS demonstrating the presence of regular structures in the 30–40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS) indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS) studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS) are warranted, and it is hoped that this work will stimulate others to pursue this line of research.


Sign in / Sign up

Export Citation Format

Share Document