Faculty Opinions recommendation of Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes.

Author(s):  
Kenneth Yamada
Nature ◽  
2010 ◽  
Vol 464 (7289) ◽  
pp. 721-727 ◽  
Author(s):  
Beate Neumann ◽  
Thomas Walter ◽  
Jean-Karim Hériché ◽  
Jutta Bulkescher ◽  
Holger Erfle ◽  
...  

2010 ◽  
Vol 344 (1) ◽  
pp. 473
Author(s):  
Dennis A. Ridenour ◽  
Katherine W. Prather ◽  
Rebecca McLennan ◽  
Zachary Warren ◽  
Paul M. Kulesa

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Nickolay Vassilev Bukoreshtliev ◽  
Erlend Hodneland ◽  
Tilo Wolf Eichler ◽  
Patricia Eifart ◽  
Amin Rustom ◽  
...  

The biogenesis, maturation, and exocytosis of secretory granules in interphase cells have been well documented, whereas the distribution and exocytosis of these hormone-storing organelles during cell division have received little attention. By combining ultrastructural analyses and time-lapse microscopy, we here show that, in dividing PC12 cells, the prominent peripheral localization of secretory granules is retained during prophase but clearly reduced during prometaphase, ending up with only few peripherally localized secretory granules in metaphase cells. During anaphase and telophase, secretory granules exhibited a pronounced movement towards the cell midzone and, evidently, their tracks colocalized with spindle microtubules. During cytokinesis, secretory granules were excluded from the midbody and accumulated at the bases of the intercellular bridge. Furthermore, by measuring exocytosis at the single granule level, we showed, that during all stages of cell division, secretory granules were competent for regulated exocytosis. In conclusion, our data shed new light on the complex molecular machinery of secretory granule redistribution during cell division, which facilitates their release from the F-actin-rich cortex and active transport along spindle microtubules.


2010 ◽  
Vol 191 (4) ◽  
pp. 741-749 ◽  
Author(s):  
Mathew P. Estey ◽  
Caterina Di Ciano-Oliveira ◽  
Carol D. Froese ◽  
Margaret T. Bejide ◽  
William S. Trimble

Septins are a family of GTP-binding proteins implicated in mammalian cell division. Most studies examining the role of septins in this process have treated the family as a whole, thus neglecting the possibility that individual members may have diverse functions. To address this, we individually depleted each septin family member expressed in HeLa cells by siRNA and assayed for defects in cell division by immunofluorescence and time-lapse microscopy. Depletion of SEPT2, SEPT7, and SEPT11 causes defects in the early stages of cytokinesis, ultimately resulting in binucleation. In sharp contrast, SEPT9 is dispensable for the early stages of cell division, but is critical for the final separation of daughter cells. Rescue experiments indicate that SEPT9 isoforms containing the N-terminal region are sufficient to drive cytokinesis. We demonstrate that SEPT9 mediates the localization of the vesicle-tethering exocyst complex to the midbody, providing mechanistic insight into the role of SEPT9 during abscission.


2009 ◽  
Vol 191 (13) ◽  
pp. 4186-4194 ◽  
Author(s):  
Pamela Gamba ◽  
Jan-Willem Veening ◽  
Nigel J. Saunders ◽  
Leendert W. Hamoen ◽  
Richard A. Daniel

ABSTRACT Cell division in bacteria is carried out by about a dozen proteins which assemble at midcell and form a complex known as the divisome. To study the dynamics and temporal hierarchy of divisome assembly in Bacillus subtilis, we have examined the in vivo localization pattern of a set of division proteins fused to green fluorescent protein in germinating spores and vegetative cells. Using time series and time-lapse microscopy, we show that the FtsZ ring assembles early and concomitantly with FtsA, ZapA, and EzrA. After a time delay of at least 20% of the cell cycle, a second set of division proteins, including GpsB, FtsL, DivIB, FtsW, Pbp2B, and DivIVA, are recruited to midcell. Together, our data provide in vivo evidence for two-step assembly of the divisome. Interestingly, overproduction of FtsZ advances the temporal assembly of EzrA but not of DivIVA, suggesting that a signal different from that of FtsZ polymerization drives the assembly of late divisome proteins. Microarray analysis shows that FtsZ depletion or overexpression does not significantly alter the transcription of division genes, supporting the hypothesis that cell division in B. subtilis is mainly regulated at the posttranscriptional level.


2020 ◽  
pp. 47-50
Author(s):  
N. V. Saraeva ◽  
N. V. Spiridonova ◽  
M. T. Tugushev ◽  
O. V. Shurygina ◽  
A. I. Sinitsyna

In order to increase the pregnancy rate in the assisted reproductive technology, the selection of one embryo with the highest implantation potential it is very important. Time-lapse microscopy (TLM) is a tool for selecting quality embryos for transfer. This study aimed to assess the benefits of single-embryo transfer of autologous oocytes performed on day 5 of embryo incubation in a TLM-equipped system in IVF and ICSI programs. Single-embryo transfer following incubation in a TLM-equipped incubator was performed in 282 patients, who formed the main group; the control group consisted of 461 patients undergoing single-embryo transfer following a traditional culture and embryo selection procedure. We assessed the quality of transferred embryos, the rates of clinical pregnancy and delivery. The groups did not differ in the ratio of IVF and ICSI cycles, average age, and infertility factor. The proportion of excellent quality embryos for transfer was 77.0% in the main group and 65.1% in the control group (p = 0.001). In the subgroup with receiving eight and less oocytes we noted the tendency of receiving more quality embryos in the main group (р = 0.052). In the subgroup of nine and more oocytes the quality of the transferred embryos did not differ between two groups. The clinical pregnancy rate was 60.2% in the main group and 52.9% in the control group (p = 0.057). The delivery rate was 45.0% in the main group and 39.9% in the control group (p > 0.050).


Sign in / Sign up

Export Citation Format

Share Document