scholarly journals Faculty Opinions recommendation of A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions.

Author(s):  
Jacques Joyard ◽  
Laurence Lejay-Lefebvre
2010 ◽  
Vol 154 (1) ◽  
pp. 311-323 ◽  
Author(s):  
Thomas C.R. Williams ◽  
Mark G. Poolman ◽  
Andrew J.M. Howden ◽  
Markus Schwarzlander ◽  
David A. Fell ◽  
...  

2017 ◽  
Author(s):  
Nicholas Horvath ◽  
Michael Vilkhovoy ◽  
Joseph A. Wayman ◽  
Kara Calhoun ◽  
James Swartz ◽  
...  

AbstractCell-free protein expression systems have become widely used in systems and synthetic biology. In this study, we developed an ensemble of dynamicE. colicell-free protein synthesis (CFPS) models. Model parameters were estimated from a training dataset for the cell-free production of a protein product, chloramphenicol acetyltransferase (CAT). The dataset consisted of measurements of glucose, organic acids, energy species, amino acids, and CAT. The ensemble accurately predicted these measurements, especially those of the central carbon metabolism. We then used the trained model to evaluate the optimality of protein production. CAT was produced with an energy efficiency of 12%, suggesting that the process could be further optimized. Reaction group knockouts showed that protein productivity and the metabolism as a whole depend most on oxidative phosphorylation and glycolysis and gluco-neogenesis. Amino acid biosynthesis is also important for productivity, while the overflow metabolism and TCA cycle affect the overall system state. In addition, the translation rate is shown to be more important to productivity than the transcription rate. Finally, CAT production was robust to allosteric control, as was most of the network, with the exception of the organic acids in central carbon metabolism. This study is the first to use kinetic modeling to predict dynamic protein production in a cell-freeE. colisystem, and should provide a foundation for genome scale, dynamic modeling of cell-freeE. coliprotein synthesis.


2021 ◽  
Vol 412 ◽  
pp. 115390
Author(s):  
Kristopher D. Rawls ◽  
Bonnie V. Dougherty ◽  
Kalyan C. Vinnakota ◽  
Venkat R. Pannala ◽  
Anders Wallqvist ◽  
...  

2012 ◽  
Vol 78 (24) ◽  
pp. 8735-8742 ◽  
Author(s):  
Yilin Fang ◽  
Michael J. Wilkins ◽  
Steven B. Yabusaki ◽  
Mary S. Lipton ◽  
Philip E. Long

ABSTRACTAccurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within anin silicomodel using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model ofGeobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-basedin silicomodelof G. metallireducensrelates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637G. metallireducensproteins detected during the 2008 experiment were associated with specific metabolic reactions in thein silicomodel. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through thein silicomodel reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in thein silicomodel that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 168
Author(s):  
John I. Hendry ◽  
Hoang V. Dinh ◽  
Debolina Sarkar ◽  
Lin Wang ◽  
Anindita Bandyopadhyay ◽  
...  

Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N2 fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors.


Sign in / Sign up

Export Citation Format

Share Document