Faculty Opinions recommendation of Aggregation of detergent-insoluble tau is involved in neuronal loss but not in synaptic loss.

Author(s):  
Karl-Peter Giese
Keyword(s):  
PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e68062 ◽  
Author(s):  
Kathryn J. Hilton ◽  
Colm Cunningham ◽  
Richard A. Reynolds ◽  
V. Hugh Perry

Author(s):  
Elif Cinar ◽  
Gul Yalcin-Cakmakli ◽  
Ayse Ulusoy ◽  
Esen Saka ◽  
Bulent Elibol ◽  
...  

2010 ◽  
Vol 285 (49) ◽  
pp. 38692-38699 ◽  
Author(s):  
Tetsuya Kimura ◽  
Tetsuya Fukuda ◽  
Naruhiko Sahara ◽  
Shunji Yamashita ◽  
Miyuki Murayama ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinwoo Kang ◽  
Jinho Kim ◽  
Keun-A Chang

AbstractAlzheimer’s disease (AD) is mainly characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFTs). While the recent 5xFAD AD mouse model exhibits many AD-related phenotypes and a relatively early and aggressive amyloid β production, it does not show NFTs. Here, we developed and evaluated a novel AD mouse model (6xTg-AD, 6xTg) by crossbreeding 5xFAD mice with mice expressing mutant (P301L) tau protein (MAPT). Through behavioral and histopathological tests, we analyzed cognitive changes and neuropathology in 6xTg mice compared to their respective parental strains according to age. Spatial memory deficits occurred in 6xTg mice at 2 months of age, earlier than they occurred in 5xFAD mice. Histopathological data revealed aggressive Aβ42 and p-tau accumulation in 6xTg mice. Microglial activation occurred in the cortex and hippocampus of 6xTg mice beginning at 2 months. In 6xTg model mice, the synaptic loss was observed in the cortex from 4 months of age and in the hippocampus from 6 months of age, and neuronal loss appeared in the cortex from 4 months of age and in the hippocampus 6 months of age, earlier than it is observed in the 5xFAD and JNPL3 models. These results showed that each pathological symptom appeared much faster than in their parental animal models. In conclusion, these novel 6xTg-AD mice might be an advanced animal model for studying AD, representing a promising approach to developing effective therapy.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094625
Author(s):  
Hua Wang ◽  
Cai Zhang ◽  
Long-en Yang ◽  
Zhiyou Yang

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. Neurite atrophy and synaptic loss initiate the onset of neuronal death, while the activated M1 microglia-induced neuroinflammatory microenvironment inhibits neurite regeneration and exacerbates neuronal loss. Thus, optimizing the brain microenvironment using small compounds through suppressing activated M1 microglia and promoting neurite regrowth might be an effective therapeutic strategy for AD. We found that hederagenin (HED), a naturally occurring triterpene compound, inhibited lipopolysaccharide-induced nitric oxide generation and downregulated expression of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6. Further investigation of primary microglia confirmed that HED inhibited Iba-1 positive M1 microglia. However, no changes were seen in CD206 positive M2 microglia polarization. HED remarkably suppressed phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells subunit p65 signaling. In addition, HED ameliorated Aβ25-35-induced neuritic atrophy and neuronal death. Therefore, HED might be a therapeutic candidate for AD.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 483 ◽  
Author(s):  
Luciana Politti Cartarozzi ◽  
Matheus Perez ◽  
Frank Kirchhoff ◽  
Alexandre Leite Rodrigues de Oliveira

Lesions to the CNS/PNS interface are especially severe, leading to elevated neuronal degeneration. In the present work, we establish the ventral root crush model for mice, and demonstrate the potential of such an approach, by analyzing injury evoked motoneuron loss, changes of synaptic coverage and concomitant glial responses in β2-microglobulin knockout mice (β2m KO). Young adult (8–12 weeks old) C57BL/6J (WT) and β2m KO mice were submitted to a L4–L6 ventral roots crush. Neuronal survival revealed a time-dependent motoneuron-like cell loss, both in WT and β2m KO mice. Along with neuronal loss, astrogliosis increased in WT mice, which was not observed in β2m KO mice. Microglial responses were more pronounced during the acute phase after lesion and decreased over time, in WT and KO mice. At 7 days after lesion β2m KO mice showed stronger Iba-1+ cell reaction. The synaptic inputs were reduced over time, but in β2m KO, the synaptic loss was more prominent between 7 and 28 days after lesion. Taken together, the results herein demonstrate that ventral root crushing in mice provides robust data regarding neuronal loss and glial reaction. The retrograde reactions after injury were altered in the absence of functional MHC-I surface expression.


2019 ◽  
Author(s):  
Yong-Gang Fan ◽  
Tian Guo ◽  
Xiao-Ran Han ◽  
Jun-Lin Liu ◽  
Yu-Ting Cai ◽  
...  

2013 ◽  
Vol 10 (4) ◽  
pp. 390-405 ◽  
Author(s):  
Mar Cuadrado-Tejedor ◽  
Jesus Felipe Cabodevilla ◽  
Marta Zamarbide ◽  
Teresa Gomez-Isla ◽  
Rafael Franco ◽  
...  

2018 ◽  
Vol 15 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Joana Ferreira da Costa ◽  
Xerardo Garcia-Mera ◽  
David Silva Poceiro ◽  
Olga Caamano

Backiground: Alzheimer's disease is a fatal, complex, neurodegenerative disease over 46 million people live with dementia in the world characterized by the presence of plaques containing β-amyloid and neuronal loss. The GPE acts as a survival factor against β-amyloid insult in brain and suggests a possible new therapeutic strategy for the treatment of Central Nervous System injuries and neurodegenerative disorders. The structural simplicity of GPE makes it a suitable lead molecule for the development of new drugs that to cross the blood-brain barrier. Objective: With these aims in mind, we embarked on a synthetic program focused on the modification of the Lproline residue of GPE in order to investigate its importance on the neuroprotective activities. Method: The general synthetic strategy involved the preparation of several modified proline residues, which were subsequently coupled to N-Boc-glycine-OH and glutamic dimethyl ester hydrochloride. Results: the mixture of compounds 11 was obtained in good yields (72%) under these conditions, and this was readily separated by column chromatography and the components were identified by 1H and 13C NMR spectral, as well as by its EI HRMS. Conclusion: Compound (±)-8 was coupled with L-glutamic dimethyl ester hydrochloride gave a mixture of dipeptides 9a and 9b in a satisfactory yield. The use of T3P as coupling agent of the mixture 10a and 10b with Boc-glycine provided a new analogue of GPE, tripeptide 11, obtained with an overall yield of 65% from (±)-1.


Sign in / Sign up

Export Citation Format

Share Document