Faculty Opinions recommendation of Integrating common and rare genetic variation in diverse human populations.

Author(s):  
Michele Ramsay
2021 ◽  
Author(s):  
Daniel J. Cotter ◽  
Timothy H. Webster ◽  
Melissa A. Wilson

AbstractMutation, recombination, selection, and demography affect genetic variation across the genome. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. The X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these processes, notably the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. Here we investigate diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. We find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1 and highest on the non-recombining X chromosome, with the XTR falling in between, suggesting that the XTR (usually included in the non-recombining X) may need to be considered separately in future studies. We also observed strong population-specific effects on genetic diversity; not only does genetic variation differ on the X and autosomes among populations, but the effects of linked selection on the X relative to autosomes have been shaped by population-specific history. The substantial variation in patterns of variation across these regions provides insight into the unique evolutionary history contained within the X chromosome.Significance StatementDemography and selection affect the X chromosome differently from non-sex chromosomes. However, the X chromosome can be subdivided into multiple distinct regions that facilitate even more fine-scaled assessment of these processes. Here we study regions of the human X chromosome in 26 populations to find evidence that recombination may be mutagenic in humans and that the X-transposed region may undergo recombination. Further we observe that the effects of selection and demography act differently on the X chromosome relative to the autosomes across human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.


2019 ◽  
Vol 9 (6) ◽  
pp. 146 ◽  
Author(s):  
Sheerin ◽  
Kovalchick ◽  
Overstreet ◽  
Rappaport ◽  
Williamson ◽  
...  

: Genes, environmental factors, and their interplay affect posttrauma symptoms. Although environmental predictors of the longitudinal course of posttraumatic stress disorder (PTSD) symptoms are documented, there remains a need to incorporate genetic risk into these models, especially in youth who are underrepresented in genetic studies. In an epidemiologic sample tornado-exposed adolescents (n = 707, 51% female, Mage = 14.54 years), trajectories of PTSD symptoms were examined at baseline and at 4-months and 12-months following baseline. This study aimed to determine if rare genetic variation in genes previously found in the sample to be related to PTSD diagnosis at baseline (MPHOSPH9, LGALS13, SLC2A2), environmental factors (disaster severity, social support), or their interplay were associated with symptom trajectories. A series of mixed effects models were conducted. Symptoms decreased over the three time points. Elevated tornado severity was associated with elevated baseline symptoms. Elevated recreational support was associated with lower baseline symptoms and attenuated improvement over time. Greater LGLAS13 variants attenuated symptom improvement over time. An interaction between MPHOSPH9 variants and tornado severity was associated with elevated baseline symptoms, but not change over time. Findings suggest the importance of rare genetic variation and environmental factors on the longitudinal course of PTSD symptoms following natural disaster trauma exposure.


2019 ◽  
Vol 7 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Detelina Grozeva ◽  
Salha Saad ◽  
Georgina E. Menzies ◽  
Rebecca Sims

2016 ◽  
Vol 283 (1831) ◽  
pp. 20160499 ◽  
Author(s):  
Rebecca H. Chisholm ◽  
Mark M. Tanaka

Mycobacterium tuberculosis has an unusual natural history in that the vast majority of its human hosts enter a latent state that is both non-infectious and devoid of any symptoms of disease. From the pathogen perspective, it seems counterproductive to relinquish reproductive opportunities to achieve a détente with the host immune response. However, a small fraction of latent infections reactivate to the disease state. Thus, latency has been argued to provide a safe harbour for future infections which optimizes the persistence of M. tuberculosis in human populations. Yet, if a pathogen begins interactions with humans as an active disease without latency, how could it begin to evolve latency properties without incurring an immediate reproductive disadvantage? We address this question with a mathematical model. Results suggest that the emergence of tuberculosis latency may have been enabled by a mechanism akin to cryptic genetic variation in that detrimental latency properties were hidden from natural selection until their expression became evolutionarily favoured.


Author(s):  
Jonathan Slack

‘Genes as markers’ shows that most genetic variation does not affect gene function or activity, but it is still of enormous interest. Notably it enables the identification of individual people, useful in forensics in the form of DNA fingerprinting, the establishment of paternity, and other information about family relationships. It also provides some evidence about the migration of human populations in historic and prehistoric times. Genetic variation has also enabled biologists to examine the thorny issue of human racial differences and establish the degree to which there is any biological basis for perceived race.


2016 ◽  
Vol 113 (43) ◽  
pp. E6620-E6629 ◽  
Author(s):  
Mary Anna Carbone ◽  
Akihiko Yamamoto ◽  
Wen Huang ◽  
Rachel A. Lyman ◽  
Tess Brune Meadors ◽  
...  

Senescence, i.e., functional decline with age, is a major determinant of health span in a rapidly aging population, but the genetic basis of interindividual variation in senescence remains largely unknown. Visual decline and age-related eye disorders are common manifestations of senescence, but disentangling age-dependent visual decline in human populations is challenging due to inability to control genetic background and variation in histories of environmental exposures. We assessed the genetic basis of natural variation in visual senescence by measuring age-dependent decline in phototaxis using Drosophila melanogaster as a genetic model system. We quantified phototaxis at 1, 2, and 4 wk of age in the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and found an average decline in phototaxis with age. We observed significant genetic variation for phototaxis at each age and significant genetic variation in senescence of phototaxis that is only partly correlated with phototaxis. Genome-wide association analyses in the DGRP and a DGRP-derived outbred, advanced intercross population identified candidate genes and genetic networks associated with eye and nervous system development and function, including seven genes with human orthologs previously associated with eye diseases. Ninety percent of candidate genes were functionally validated with targeted RNAi-mediated suppression of gene expression. Absence of candidate genes previously implicated with longevity indicates physiological systems may undergo senescence independent of organismal life span. Furthermore, we show that genes that shape early developmental processes also contribute to senescence, demonstrating that senescence is part of a genetic continuum that acts throughout the life span.


Sign in / Sign up

Export Citation Format

Share Document