Faculty Opinions recommendation of A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants.

Author(s):  
Virginia Papaioannou ◽  
Ripla Arora
Keyword(s):  
2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Julia Tischler ◽  
Wolfram H Gruhn ◽  
John Reid ◽  
Edward Allgeyer ◽  
Florian Buettner ◽  
...  

Development ◽  
2021 ◽  
Author(s):  
Saya Kagiwada ◽  
Shinya Aramaki ◽  
Guangming Wu ◽  
Borami Shin ◽  
Eva Kutejova ◽  
...  

The germ cell lineage in mammals is induced by the stimulation of pluripotent epiblast cells with signaling molecules. Previous studies have suggested that the germ cell differentiation competence or responsiveness of epiblast cells to signaling molecules is established and maintained in epiblast cells of a specific differentiation state. However, the molecular mechanism underlying this process has not been well defined. Here, using the differentiation model of epiblast stem cells (EpiSCs), we have shown that two defined EpiSC lines have robust germ cell differentiation competence. However, another defined EpiSC line has no competence. By evaluating the molecular basis of EpiSCs with distinct germ cell differentiation competence, we identified YAP/YAP1/YAP65, an intracellular mediator of the Hippo signaling pathway, as a critical mediator for establishing germ cell induction. Strikingly, deletion of YAP severely affected responsiveness to inductive stimuli, leading to a defect in WNT target activation and germ cell differentiation. In conclusion, we propose that the Hippo/YAP signaling pathway creates a potential for germ cell fate induction via mesodermal WNT signaling in pluripotent epiblast cells.


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1011-1022 ◽  
Author(s):  
T.L. Gumienny ◽  
E. Lambie ◽  
E. Hartwieg ◽  
H.R. Horvitz ◽  
M.O. Hengartner

Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.


2019 ◽  
Author(s):  
Chloé Mayère ◽  
Yasmine Neirijnck ◽  
Pauline Sararols ◽  
Chris M Rands ◽  
Isabelle Stévant ◽  
...  

SummaryDespite the importance of germ cell (GC) differentiation for sexual reproduction, the gene networks underlying their fate remain unclear. Here, we comprehensively characterize the gene expression dynamics during sex determination based on single-cell RNA sequencing of 14,914 XX and XY mouse GCs between embryonic days (E) 9.0 and 16.5. We found that XX and XY GCs diverge transcriptionally as early as E11.5 with upregulation of genes downstream of the Bone morphogenic protein (BMP) and Nodal/Activin pathways in XY and XX GCs, respectively. We also identified a sex-specific upregulation of genes associated with negative regulation of mRNA processing and an increase in intron retention consistent with a reduction in mRNA splicing in XY testicular GCs by E13.5. Using computational gene regulation network inference analysis, we identified sex-specific, sequential waves of putative key regulator genes during GC differentiation and revealed that the meiotic genes are regulated by positive and negative master modules acting in an antagonistic fashion. Finally, we found that rare adrenal GCs enter meiosis similarly to ovarian GCs but display altered expression of master genes controlling the female and male genetic programs, indicating that the somatic environment is important for GC function. Our data is available on a web platform and provides a molecular roadmap of GC sex determination at single-cell resolution, which will serve as a valuable resource for future studies of gonad development, function and disease.


2018 ◽  
Author(s):  
Kathryn E. Kistler ◽  
Tatjana Trcek ◽  
Thomas R. Hurd ◽  
Ruoyu Chen ◽  
Feng-Xia Liang ◽  
...  

ABSTRACTGerm granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar’s nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 815-824 ◽  
Author(s):  
M.B. Rogers ◽  
B.A. Hosler ◽  
L.J. Gudas

We have previously isolated a cDNA clone for a gene whose expression is reduced by retinoic acid (RA) treatment of F9 embryonal carcinoma cells. The nucleotide sequence indicated that this gene, Rex-1, encodes a zinc-finger protein and thus may be a transcriptional regulator. The Rex-1 message level is high in two lines of embryonic stem cells (CCE and D3) and is reduced when D3 cells are induced to differentiate using four different growth conditions. As expected for a stem-cell-specific message, Rex-1 mRNA is present in the inner cell mass (ICM) of the day 4.5 mouse blastocyst. It is also present in the polar trophoblast of the blastocyst. One and two days later, Rex-1 message is found in the ectoplacental cone and extraembryonic ectoderm of the egg cylinder (trophoblast-derived tissues), but its abundance is much reduced in the embryonic ectoderm which is directly descended from the ICM. Rex-1 is expressed in the day 18 placenta (murine gestation is 18 days), a tissue which is largely derived from trophoblast. The only tested adult tissue that contains detectable amounts of Rex-1 mRNA is the testis. In situ hybridization and northern analyses of RNA from germ-cell-deficient mouse testis and stage-specific germ cell preparations suggest that Rex-1 expression is limited to spermatocytes (germ cells undergoing meiosis). These results suggest that Rex-1 is involved in trophoblast development and spermatogenesis, and is a useful marker for studies of early cell fate determination in the ICM.


Reproduction ◽  
2005 ◽  
Vol 130 (6) ◽  
pp. 923-929 ◽  
Author(s):  
Rahul Rathi ◽  
Ali Honaramooz ◽  
Wenxian Zeng ◽  
Stefan Schlatt ◽  
Ina Dobrinski

Spermatogenesis can occur in testis tissue from immature bulls ectopically grafted into mouse hosts; however, efficiency of sperm production is lower than in other donor species. To elucidate a possible mechanism for the impaired spermatogenesis in bovine testis xenografts, germ cell fate and xenograft development were investigated at different time points and compared with testis tissue from age-matched calves as controls. Histologically, an initial decrease in germ cell number was noticed in xenografts recovered up to 2 months post-grafting without an increase in germ cell apoptosis. From 2 months onward, the number of germ cells increased. In contrast, a continuous increase in germ cell number was seen in control tissue. Pachytene spermatocytes were observed in some grafts before 4 months, whereas in the control tissue they were not present until 5 months of age. Beyond 4 months post-grafting spermatogenesis appeared to be arrested at the pachytene spermatocyte stage in most grafts. Elongated spermatids were observed between 6 and 8 months post-grafting, similar to the controls, albeit in much lower numbers. Lumen formation started earlier in grafts compared with controls and by 6 months post-grafting tubules with extensively dilated lumen were observed. A donor effect on efficiency of spermatogenesis was also observed. These results indicate that the low efficiency of sperm production in bovine xenografts is due to an initial deficit of germ cells and impaired meiotic and post-meiotic differentiation. The characterization of spermatogenic efficiency will provide the basis to understand the control of spermatogenesis in testis grafts.


Sign in / Sign up

Export Citation Format

Share Document