scholarly journals Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline

Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1011-1022 ◽  
Author(s):  
T.L. Gumienny ◽  
E. Lambie ◽  
E. Hartwieg ◽  
H.R. Horvitz ◽  
M.O. Hengartner

Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.

2020 ◽  
Vol 8 (4) ◽  
pp. 24 ◽  
Author(s):  
Nida ul Fatima ◽  
Baris Tursun

The potential of a cell to produce all types of differentiated cells in an organism is termed totipotency. Totipotency is an essential property of germ cells, which constitute the germline and pass on the parental genetic material to the progeny. The potential of germ cells to give rise to a whole organism has been the subject of intense research for decades and remains important in order to better understand the molecular mechanisms underlying totipotency. A better understanding of the principles of totipotency in germ cells could also help to generate this potential in somatic cell lineages. Strategies such as transcription factor-mediated reprogramming of differentiated cells to stem cell-like states could benefit from this knowledge. Ensuring pluripotency or even totipotency of reprogrammed stem cells are critical improvements for future regenerative medicine applications. The C. elegans germline provides a unique possibility to study molecular mechanisms that maintain totipotency and the germ cell fate with its unique property of giving rise to meiotic cells Studies that focused on these aspects led to the identification of prominent chromatin-repressing factors such as the C. elegans members of the Polycomb Repressive Complex 2 (PRC2). In this review, we summarize different factors that were recently identified, which use molecular mechanisms such as control of protein translation or chromatin repression to ensure maintenance of totipotency and the germline fate. Additionally, we focus on recently identified factors involved in preventing transcription-factor-mediated conversion of germ cells to somatic lineages. These so-called reprogramming barriers have been shown in some instances to be conserved with regard to their function as a cell fate safeguarding factor in mammals. Overall, continued studies assessing the different aspects of molecular pathways involved in maintaining the germ cell fate in C. elegans may provide more insight into cell fate safeguarding mechanisms also in other species.


Genetics ◽  
1995 ◽  
Vol 139 (2) ◽  
pp. 561-577 ◽  
Author(s):  
R E Ellis ◽  
J Kimble

Abstract In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two.


2014 ◽  
Vol 206 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Rana Amini ◽  
Eugénie Goupil ◽  
Sara Labella ◽  
Monique Zetka ◽  
Amy S. Maddox ◽  
...  

Cytokinesis generally produces two separate daughter cells, but in some tissues daughter nuclei remain connected to a shared cytoplasm, or syncytium, through incomplete cytokinesis. How syncytia form remains poorly understood. We studied syncytial formation in the Caenorhabditis elegans germline, in which germ cells connect to a shared cytoplasm core (the rachis) via intercellular bridges. We found that syncytial architecture initiates early in larval development, and germ cells become progressively interconnected until adulthood. The short Anillin family scaffold protein ANI-2 is enriched at intercellular bridges from the onset of germ cell specification, and ANI-2 loss resulted in destabilization of intercellular bridges and germ cell multinucleation defects. These defects were partially rescued by depleting the canonical Anillin ANI-1 or blocking cytoplasmic streaming. ANI-2 is also required for elastic deformation of the gonad during ovulation. We propose that ANI-2 promotes germ cell syncytial organization and allows for compensation of the mechanical stress associated with oogenesis by conferring stability and elasticity to germ cell intercellular bridges.


Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5135-5143 ◽  
Author(s):  
Magali Maire ◽  
Anne Florin ◽  
Krisztian Kaszas ◽  
Daniel Regnier ◽  
Pierre Contard ◽  
...  

In utero exposure to chemicals with antiandrogen activity induces undescended testis, hypospadias, and sub- or infertility. The hypospermatogenesis observed in the adult rat testis exposed in utero to the antiandrogen flutamide has been reported to be a result of a long-term apoptotic cell death process in mature germ cells. However, little if anything is known about the upstream signaling mechanisms controlling this apoptosis. In the present study, we have investigated the possibility that the TGF-β signaling pathway may be at play in this control of the apoptotic germ cell death process. By using a model of adult rat exposed in utero to 0, 0.4, 2, or 10 mg/kg·d flutamide, we observed that pro-TGF-β signaling members, such as the three isoforms of TGF-β ligands (TGF-β1–3), the two TGF-β receptors (TGF-βRI and -RII) and the R-Smads Smad 1, Smad 2, Smad 3, and Smad 5 were inhibited at the mRNA and protein levels, whereas the anti-TGF-β signaling member Smad 7 was overexpressed. Furthermore, we report that the overexpression of Smad 7 mRNA could induce an activation of c-Jun N-terminal kinase, because of the observed c-Jun overexpression, activation, and nuclear translocation leading to an increase in the transcription of the proapoptotic factor Fas-L. Together, the alterations of TGF-β signaling may represent upstream mechanisms underlying the adult germ cell apoptotic process evidenced in adult rat testis exposed in utero to antiandrogenic compounds such as flutamide.


Author(s):  
N. T. Chartier ◽  
A. Mukherjee ◽  
J. Pfanzelter ◽  
S. Fürthauer ◽  
B. T. Larson ◽  
...  

AbstractOocytes are large and resourceful. During oogenesis some germ cells grow, typically at the expense of others that undergo apoptosis. How germ cells are selected to live or die out of a homogeneous population remains unclear. Here we show that this cell fate decision in C. elegans is mechanical and related to tissue hydraulics. Germ cells become inflated when the pressure inside them is lower than in the common cytoplasmic pool. This condition triggers a hydraulic instability which amplifies volume differences and causes some germ cells to grow and others to shrink. Shrinking germ cells are extruded and die, as we demonstrate by reducing germ cell volumes via thermoviscous pumping. Together, this reveals a robust mechanism of mechanochemical cell fate decision making in the germline.


Development ◽  
2021 ◽  
pp. dev.199380
Author(s):  
Shengfei Dai ◽  
Shuangshuang Qi ◽  
Xueyan Wei ◽  
Xingyong Liu ◽  
Yibing Li ◽  
...  

Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates.


Development ◽  
2020 ◽  
pp. dev.193060
Author(s):  
Stefan Redl ◽  
Antonio M. de Jesus Domingues ◽  
Edoardo Caspani ◽  
Stefanie Möckel ◽  
Willi Salvenmoser ◽  
...  

Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-Expressed non-coding RNA Loci, PERLs) that are enriched for retro-transposons and piRNAs, and a rise in piRNA biogenesis signatures. Interestingly, no nuclear Piwi protein could be detected at any time point, indicating that the zebrafish piRNA pathway is fully cytoplasmic. Our data show that the post-migratory stage of zebrafish PGCs holds many cues to both germ cell fate establishment and piRNA pathway activation.


2021 ◽  
Author(s):  
Nicolas T. Chartier ◽  
Arghyadip Mukherjee ◽  
Julia Pfanzelter ◽  
Sebastian Fürthauer ◽  
Ben T. Larson ◽  
...  

AbstractOocytes are large cells that develop into an embryo upon fertilization1. As interconnected germ cells mature into oocytes, some of them grow—typically at the expense of others that undergo cell death2–4. We present evidence that in the nematode Caenorhabditis elegans, this cell-fate decision is mechanical and related to tissue hydraulics. An analysis of germ cell volumes and material fluxes identifies a hydraulic instability that amplifies volume differences and causes some germ cells to grow and others to shrink, a phenomenon that is related to the two-balloon instability5. Shrinking germ cells are extruded and they die, as we demonstrate by artificially reducing germ cell volumes via thermoviscous pumping6. Our work reveals a hydraulic symmetry-breaking transition central to the decision between life and death in the nematode germline.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2587 ◽  
Author(s):  
Hyemin Min ◽  
Ji-Sun Kim ◽  
Jiyun Ahn ◽  
Yhong-Hee Shim

Gliadin is a major protein component of gluten and causes gluten toxicity through intestinal stress. We previously showed that gliadin intake induces oxidative stress in the intestine and reduces fertility in a Caenorhabditis elegans model. To elucidate the possible link between intestinal stress and reproduction, changes in the intestine and germ cells of C. elegans after gliadin intake were examined at the molecular level. Gliadin intake increased reactive oxygen species (ROS) production in the intestine, decreased intestinal F-actin levels, and increased germ cell apoptosis. These gliadin-triggered effects were suppressed by antioxidant treatment. These results suggest that ROS production in the intestine induced by gliadin intake causes disruption of intestinal integrity and increases germ cell apoptosis. Gliadin-induced germ cell apoptosis (GIGA) was suppressed by depletion of cep-1, ced-13, egl-1, or mpk-1. However, HUS-1 was not activated, suggesting that GIGA is activated through the mitogen-activated protein kinase (MAPK) pathway and is CEP-1-dependent but is a separate pathway from that controlling the DNA damage response. Taken together, our results suggest that gliadin causes intestinal barrier disruption through ROS production and interacts with the germ cells to reduce fertility through GIGA.


2021 ◽  
Vol 15 ◽  
Author(s):  
Iris Marchal ◽  
Baris Tursun

Cell fate conversion by the forced overexpression of transcription factors (TFs) is a process known as reprogramming. It leads to de-differentiation or trans-differentiation of mature cells, which could then be used for regenerative medicine applications to replenish patients suffering from, e.g., neurodegenerative diseases, with healthy neurons. However, TF-induced reprogramming is often restricted due to cell fate safeguarding mechanisms, which require a better understanding to increase reprogramming efficiency and achieve higher fidelity. The germline of the nematode Caenorhabditis elegans has been a powerful model to investigate the impediments of generating neurons from germ cells by reprogramming. A number of conserved factors have been identified that act as a barrier for TF-induced direct reprogramming of germ cells to neurons. In this review, we will first summarize our current knowledge regarding cell fate safeguarding mechanisms in the germline. Then, we will focus on the molecular mechanisms underlying neuronal induction from germ cells upon TF-mediated reprogramming. We will shortly discuss the specific characteristics that might make germ cells especially fit to change cellular fate and become neurons. For future perspectives, we will look at the potential of C. elegans research in advancing our knowledge of the mechanisms that regulate cellular identity, and what implications this has for therapeutic approaches such as regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document