Faculty Opinions recommendation of Experimentally decoupling reproductive investment from energy storage to test the functional basis of a life-history trade-off.

Author(s):  
Thomas Cameron
2018 ◽  
Vol 285 (1892) ◽  
pp. 20182141 ◽  
Author(s):  
Stefania Casagrande ◽  
Michaela Hau

The trade-off between reproductive investment and survival is central to life-history theory, but the relative importance and the complex interactions among the physiological mechanisms mediating it are still debated. Here we experimentally tested whether baseline glucocorticoid hormones, the redox system or their interaction mediate reproductive investment–survival trade-offs in wild great tits ( Parus major ). We increased the workload of parental males by clipping three feathers on each wing, and 5 days later determined effects on baseline corticosterone concentrations (Cort), redox state (reactive oxygen metabolites, protein carbonyls, glutathione peroxidase [GPx], total non-enzymatic antioxidants), body mass, body condition, reproductive success and survival. Feather-clipping did not affect fledgling numbers, chick body condition, nest provisioning rates or survival compared with controls. However, feather-clipped males lost mass and increased both Cort and GPx concentrations. Within feather-clipped individuals, GPx increases were positively associated with reproductive investment (i.e. male nest provisioning). Furthermore, within all individuals, males that increased GPx suffered reduced survival rates. Baseline Cort increases were related to mass loss but not to redox state, nest provisioning or male survival. Our findings provide experimental evidence that changes in the redox system are associated with the trade-off between reproductive investment and survival, while baseline Cort may support this trade-off indirectly through a link with body condition. These results also emphasize that plastic changes in individuals, rather than static levels of physiological signals, may mediate life-history trade-offs.


Author(s):  
Kristina Noreikienė ◽  
Kim Jaatinen ◽  
Benjamin B. Steele ◽  
Markus Öst

AbstractGlucocorticoid hormones may mediate trade-offs between current and future reproduction. However, understanding their role is complicated by predation risk, which simultaneously affects the value of the current reproductive investment and elevates glucocorticoid levels. Here, we shed light on these issues in long-lived female Eiders (Somateria mollissima) by investigating how current reproductive investment (clutch size) and hatching success relate to faecal glucocorticoid metabolite [fGCM] level and residual reproductive value (minimum years of breeding experience, body condition, relative telomere length) under spatially variable predation risk. Our results showed a positive relationship between colony-specific predation risk and mean colony-specific fGCM levels. Clutch size and female fGCM were negatively correlated only under high nest predation and in females in good body condition, previously shown to have a longer life expectancy. We also found that younger females with longer telomeres had smaller clutches. The drop in hatching success with increasing fGCM levels was least pronounced under high nest predation risk, suggesting that elevated fGCM levels may allow females to ensure some reproductive success under such conditions. Hatching success was positively associated with female body condition, with relative telomere length, particularly in younger females, and with female minimum age, particularly under low predation risk, showing the utility of these metrics as indicators of individual quality. In line with a trade-off between current and future reproduction, our results show that high potential for future breeding prospects and increased predation risk shift the balance toward investment in future reproduction, with glucocorticoids playing a role in the resolution of this trade-off.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Silu Lin ◽  
Jana Werle ◽  
Judith Korb

AbstractOrganisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled among insects. How this is achieved is not understood. Here, we identified a single module of co-expressed genes that characterized queens in the termite species Cryptotermes secundus. It encompassed genes from all essential pathways known to be involved in life-history regulation in solitary model organisms. By manipulating its endocrine component, we tested the recent hypothesis that re-wiring along the nutrient-sensing/endocrine/fecundity axis can account for the reversal of the fecundity/longevity trade-off in social insect queens. Our data from termites do not support this hypothesis. However, they revealed striking links to social communication that offer new avenues to understand the re-modelling of the fecundity/longevity trade-off in social insects.


2012 ◽  
Vol 279 (1744) ◽  
pp. 4033-4041 ◽  
Author(s):  
J. Vézilier ◽  
A. Nicot ◽  
S. Gandon ◽  
A. Rivero

Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium- infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium- infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).


2020 ◽  
Vol 113 (4) ◽  
pp. 1963-1971
Author(s):  
Tomohisa Fujii ◽  
Sachiyo Sanada-Morimura ◽  
Keiichiro Matsukura ◽  
Ho Van Chien ◽  
Le Quoc Cuong ◽  
...  

Abstract Development of insecticide resistance often changes life history traits of insect pests, because metabolic detoxification of insecticides in insect bodies requires huge energetic reserves. The brown planthopper, Nilaparvata lugens (Stål), an important insect pest of rice crop in East and Southeast Asia, has developed strong resistance to imidacloprid from mid-2000s. The aim of this study was to examine the costs of life history traits and reveal changes in energy reserves with developing imidacloprid resistance. We compared the life history traits (survival time, fecundity, developmental time, and hatchability) and total lipid content between imidacloprid-resistant and imidacloprid-susceptible (control) brown planthopper strains. As compared to the control strains, adults’ survival time of the resistant females was shorter, and their fecundity was lower; the other life history traits did not differ significantly between the resistant and control strains. As the results, net reproductive rates (R0) were lower in the resistant strains than in the susceptible strains. However, the amount of stored lipids was larger in resistant females than control ones. Our findings demonstrated a physiological trade-off between the development of imidacloprid resistance and the reproductive traits of brown planthopper. The imidacloprid-resistant strains are likely to store lipids for metabolic detoxification rather than consume them for reproduction.


2020 ◽  
Vol 117 (45) ◽  
pp. 28134-28139 ◽  
Author(s):  
Reniel B. Cabral ◽  
Darcy Bradley ◽  
Juan Mayorga ◽  
Whitney Goodell ◽  
Alan M. Friedlander ◽  
...  

Marine protected areas (MPAs) are conservation tools that are increasingly implemented, with growing national commitments for MPA expansion. Perhaps the greatest challenge to expanded use of MPAs is the perceived trade-off between protection and food production. Since MPAs can benefit both conservation and fisheries in areas experiencing overfishing and since overfishing is common in many coastal nations, we ask how MPAs can be designed specifically to improve fisheries yields. We assembled distribution, life history, and fisheries exploitation data for 1,338 commercially important stocks to derive an optimized network of MPAs globally. We show that strategically expanding the existing global MPA network to protect an additional 5% of the ocean could increase future catch by at least 20% via spillover, generating 9 to 12 million metric tons more food annually than in a business-as-usual world with no additional protection. Our results demonstrate how food provisioning can be a central driver of MPA design, offering a pathway to strategically conserve ocean areas while securing seafood for the future.


2014 ◽  
Vol 10 (5) ◽  
pp. 20140178 ◽  
Author(s):  
Ella F. Cole ◽  
John L. Quinn

Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit ( Parus major ), the shy–bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether ‘exploration behaviour’, a captive assay of the shy–bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness.


Sign in / Sign up

Export Citation Format

Share Document