Faculty Opinions recommendation of In vivo and in vitro evidence that intrinsic upper- and lower-limb skeletal muscle function is unaffected by ageing and disuse in oldest-old humans.

Author(s):  
James Timmons ◽  
Iain Gallagher
2021 ◽  
Vol 12 ◽  
Author(s):  
Mario Elkes ◽  
Martin Andonovski ◽  
Daislyn Vidal ◽  
Madison Farago ◽  
Ryan Modafferi ◽  
...  

Barth syndrome is a rare and incurable X-linked (male-specific) genetic disease that affects the protein tafazzin (Taz). Taz is an important enzyme responsible for synthesizing biologically relevant cardiolipin (for heart and skeletal muscle, cardiolipin rich in linoleic acid), a critical phospholipid of mitochondrial form and function. Mutations to Taz cause dysfunctional mitochondria, resulting in exercise intolerance due to skeletal muscle weakness. To date, there has been limited research on improving skeletal muscle function, with interventions focused on endurance and resistance exercise. Previous cell culture research has shown therapeutic potential for the addition of exogenous linoleic acid in improving Taz-deficient mitochondrial function but has not been examined in vivo. The purpose of this study was to examine the influence of supplemental dietary linoleic acid on skeletal muscle function in a rodent model of Barth syndrome, the inducible Taz knockdown (TazKD) mouse. One of the main findings was that TazKD soleus demonstrated an impaired contractile phenotype (slower force development and rates of relaxation) in vitro compared to their WT littermates. Interestingly, this impaired contractile phenotype seen in vitro did not translate to altered muscle function in vivo at the whole-body level. Also, supplemental linoleic acid attenuated, to some degree, in vitro impaired contractile phenotype in TazKD soleus, and these findings appear to be partially mediated by improvements in cardiolipin content and resulting mitochondrial supercomplex formation. Future research will further examine alternative mechanisms of dietary supplemental LA on improving skeletal muscle contractile dysfunction in TazKD mice.


2015 ◽  
Vol 215 (1) ◽  
pp. 58-71 ◽  
Author(s):  
M. Venturelli ◽  
P. Saggin ◽  
E. Muti ◽  
F. Naro ◽  
L. Cancellara ◽  
...  

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 903
Author(s):  
David S. Hydock ◽  
Chia-Ying Lien ◽  
Brock T. Jensen ◽  
Traci L. Parry ◽  
Carole M. Schneider ◽  
...  

2018 ◽  
Vol 46 (3) ◽  
pp. 188-194 ◽  
Author(s):  
Massimo Venturelli ◽  
Carlo Reggiani ◽  
Russell S. Richardson ◽  
Federico Schena

2010 ◽  
Vol 298 (1) ◽  
pp. C149-C162 ◽  
Author(s):  
Nadège Zanou ◽  
Georges Shapovalov ◽  
Magali Louis ◽  
Nicolas Tajeddine ◽  
Chiara Gallo ◽  
...  

Skeletal muscle contraction is reputed not to depend on extracellular Ca2+. Indeed, stricto sensu , excitation-contraction coupling does not necessitate entry of Ca2+. However, we previously observed that, during sustained activity (repeated contractions), entry of Ca2+is needed to maintain force production. In the present study, we evaluated the possible involvement of the canonical transient receptor potential (TRPC)1 ion channel in this entry of Ca2+and investigated its possible role in muscle function. Patch-clamp experiments reveal the presence of a small-conductance channel (13 pS) that is completely lost in adult fibers from TRPC1−/−mice. The influx of Ca2+through TRPC1 channels represents a minor part of the entry of Ca2+into muscle fibers at rest, and the activity of the channel is not store dependent. The lack of TRPC1 does not affect intracellular Ca2+concentration ([Ca2+]i) transients reached during a single isometric contraction. However, the involvement of TRPC1-related Ca2+entry is clearly emphasized in muscle fatigue. Indeed, muscles from TRPC1−/−mice stimulated repeatedly progressively display lower [Ca2+]itransients than those observed in TRPC1+/+fibers, and they also present an accentuated progressive loss of force. Interestingly, muscles from TRPC1−/−mice display a smaller fiber cross-sectional area, generate less force per cross-sectional area, and contain less myofibrillar proteins than their controls. They do not present other signs of myopathy. In agreement with in vitro experiments, TRPC1−/−mice present an important decrease of endurance of physical activity. We conclude that TRPC1 ion channels modulate the entry of Ca2+during repeated contractions and help muscles to maintain their force during sustained repeated contractions.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
David Hydock ◽  
Asma Omar ◽  
Eric Bredahl ◽  
Colin Quinn

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Arne D Hofemeier ◽  
Tamara Limon ◽  
Till Moritz Muenker ◽  
Bernhard Wallmeyer ◽  
Alejandro Jurado ◽  
...  

Tension and mechanical properties of muscle tissue are tightly related to proper skeletal muscle function, which makes experimental access to the biomechanics of muscle tissue formation a key requirement to advance our understanding of muscle function and development. Recently developed elastic in vitro culture chambers allow for raising 3D muscle tissue under controlled conditions and to measure global tissue force generation. However, these chambers are inherently incompatible with high-resolution microscopy limiting their usability to global force measurements, and preventing the exploitation of modern fluorescence based investigation methods for live and dynamic measurements. Here, we present a new chamber design pairing global force measurements, quantified from post-deflection, with local tension measurements obtained from elastic hydrogel beads embedded in muscle tissue. High-resolution 3D video microscopy of engineered muscle formation, enabled by the new chamber, shows an early mechanical tissue homeostasis that remains stable in spite of continued myotube maturation.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 377 ◽  
Author(s):  
Kippeum Lee ◽  
Heegu Jin ◽  
Sungwoo Chei ◽  
Hyun-Ji Oh ◽  
Jeong-Yong Lee ◽  
...  

Obesity is associated with excess body fat accumulation that can cause hyperglycemia and reduce skeletal muscle function and strength, which characterize the development of sarcopenic obesity. In this study, we aimed to determine the mechanism whereby acid-hydrolyzed silk peptide (SP) prevents high-fat diet (HFD)-induced obesity and whether it regulates glucose uptake and muscle differentiation using in vivo and in vitro approaches. Our findings demonstrate that SP inhibits body mass gain and the expression of adipogenic transcription factors in visceral adipose tissue (VAT). SP also had an anti-diabetic effect in VAT and skeletal muscle because it upregulated glucose transporter type 4 (GLUT4) and uncoupling protein 3 (UCP3) expression. Furthermore, SP reduced ubiquitin proteasome and promoted myoblast determination protein 1 (MyoD)/myogenic factor 4 (myogenin) expression, implying that it may have potential for the treatment of obesity-induced hyperglycemia and obesity-associated sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document