Faculty Opinions recommendation of Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events.

Author(s):  
Auinash Kalsotra
2020 ◽  
Vol 39 (1) ◽  
pp. 99
Author(s):  
Young Dae Oh ◽  
Mi-Jin Choi ◽  
Youn Su Cho ◽  
Tae Hyug Jeong ◽  
Jong-Myoung Kim ◽  
...  

2019 ◽  
Vol 374 (1786) ◽  
pp. 20190097 ◽  
Author(s):  
Ashley Byrne ◽  
Charles Cole ◽  
Roger Volden ◽  
Christopher Vollmers

Long-read sequencing holds great potential for transcriptome analysis because it offers researchers an affordable method to annotate the transcriptomes of non-model organisms. This, in turn, will greatly benefit future work on less-researched organisms like unicellular eukaryotes that cannot rely on large consortia to generate these transcriptome annotations. However, to realize this potential, several remaining molecular and computational challenges will have to be overcome. In this review, we have outlined the limitations of short-read sequencing technology and how long-read sequencing technology overcomes these limitations. We have also highlighted the unique challenges still present for long-read sequencing technology and provided some suggestions on how to overcome these challenges going forward. This article is part of a discussion meeting issue ‘Single cell ecology’.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e108095 ◽  
Author(s):  
Hyunghoon Cho ◽  
Joe Davis ◽  
Xin Li ◽  
Kevin S. Smith ◽  
Alexis Battle ◽  
...  

Author(s):  
Kristoffer Sahlin ◽  
Botond Sipos ◽  
Phillip L James ◽  
Paul Medvedev

AbstractOxford Nanopore (ONT) is a leading long-read technology which has been revolutionizing transcriptome analysis through its capacity to sequence the majority of transcripts from end-to-end. This has greatly increased our ability to study the diversity of transcription mechanisms such as transcription initiation, termination, and alternative splicing. However, ONT still suffers from high error rates which have thus far limited its scope to reference-based analyses. When a reference is not available or is not a viable option due to reference-bias, error correction is a crucial step towards the reconstruction of the sequenced transcripts and downstream sequence analysis of transcripts. In this paper, we present a novel computational method to error correct ONT cDNA sequencing data, called isONcorrect. IsONcorrect is able to jointly use all isoforms from a gene during error correction, thereby allowing it to correct reads at low sequencing depths. We are able to obtain a median accuracy of 98.9-99.6%, demonstrating the feasibility of applying cost-effective cDNA full transcript length sequencing for reference-free transcriptome analysis.


2015 ◽  
Vol 33 (7) ◽  
pp. 736-742 ◽  
Author(s):  
Hagen Tilgner ◽  
Fereshteh Jahanbani ◽  
Tim Blauwkamp ◽  
Ali Moshrefi ◽  
Erich Jaeger ◽  
...  

2019 ◽  
Author(s):  
Ashley Byrne ◽  
Megan A. Supple ◽  
Roger Volden ◽  
Kristin L. Laidre ◽  
Beth Shapiro ◽  
...  

AbstractTranscriptome studies evaluating whole blood and tissues are often confounded by overrepresentation of highly abundant transcripts. These abundant transcripts are problematic as they compete with and prevent the detection of rare RNA transcripts, obscuring their biological importance. This issue is more pronounced when using long-read sequencing technologies for isoform-level transcriptome analysis, as they have relatively lower throughput compared to short-read sequencers. As a result long-read based transcriptome analysis is prohibitively expensive for non-model organisms. While there are off-the-shelf kits available for select model organisms capable of depleting highly abundant transcripts for alpha (HBA) and beta (HBB) hemoglobin, they are unsuitable for non-model organisms. To address this, we have adapted the recent CRISPR/Cas9 based depletion method (Depletion of Abundant Sequences by Hybridization) for long-read full-length cDNA sequencing approaches that we call Long-DASH. Using a recombinant Cas9 protein with appropriate guide RNAs, full-length hemoglobin transcripts can be depleted in-vitro prior to performing any short- and long-read sequencing library preparations. Using this method, we sequenced depleted full-length cDNA in parallel using both our Oxford Nanopore Technology (ONT) based R2C2 long-read approach, as well as the Illumina short-read based Smart-seq2 approach. To showcase this, we have applied our methods to create an isoform-level transcriptome from whole blood samples derived from three polar bears (Ursus maritimus). Using Long-DASH, we succeeded in depleting hemoglobin transcripts and generated deep Smart-seq2 Illumina datasets and 3.8 million R2C2 full-length cDNA consensus reads. Applying Long-DASH with our isoform identification pipeline, Mandalorion we discovered ~6,000 high-confidence isoforms and a number of novel genes. This indicates there is a high diversity of gene isoforms within Ursus maritimus not yet reported. This reproducible and straightforward approach has not only improved the polar bear transcriptome annotations but will serve as the foundation for future efforts to investigate transcriptional dynamics within the 19 polar bear subpopulations around the Arctic.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Norbert Moldován ◽  
Gábor Torma ◽  
Gábor Gulyás ◽  
Ákos Hornyák ◽  
Zoltán Zádori ◽  
...  

AbstractLong-read sequencing (LRS) has become a standard approach for transcriptome analysis in recent years. Bovine alphaherpesvirus 1 (BoHV-1) is an important pathogen of cattle worldwide. This study reports the profiling of the dynamic lytic transcriptome of BoHV-1 using two long-read sequencing (LRS) techniques, the Oxford Nanopore Technologies MinION, and the LoopSeq synthetic LRS methods, using multiple library preparation protocols. In this work, we annotated viral mRNAs and non-coding transcripts, and a large number of transcript isoforms, including transcription start and end sites, as well as splice variants of BoHV-1. Our analysis demonstrated an extremely complex pattern of transcriptional overlaps.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kristoffer Sahlin ◽  
Botond Sipos ◽  
Phillip L. James ◽  
Paul Medvedev

AbstractOxford Nanopore (ONT) is a leading long-read technology which has been revolutionizing transcriptome analysis through its capacity to sequence the majority of transcripts from end-to-end. This has greatly increased our ability to study the diversity of transcription mechanisms such as transcription initiation, termination, and alternative splicing. However, ONT still suffers from high error rates which have thus far limited its scope to reference-based analyses. When a reference is not available or is not a viable option due to reference-bias, error correction is a crucial step towards the reconstruction of the sequenced transcripts and downstream sequence analysis of transcripts. In this paper, we present a novel computational method to error correct ONT cDNA sequencing data, called isONcorrect. IsONcorrect is able to jointly use all isoforms from a gene during error correction, thereby allowing it to correct reads at low sequencing depths. We are able to obtain a median accuracy of 98.9–99.6%, demonstrating the feasibility of applying cost-effective cDNA full transcript length sequencing for reference-free transcriptome analysis.


Sign in / Sign up

Export Citation Format

Share Document