Faculty Opinions recommendation of Transcriptome Profiling of the Endophyte Burkholderia phytofirmans PsJN Indicates Sensing of the Plant Environment and Drought Stress.

Author(s):  
Leo Eberl
2021 ◽  
Author(s):  
Baozhu Li ◽  
Ruonan Fan ◽  
Guiling Sun ◽  
Ting Sun ◽  
Yanting Fan ◽  
...  

Abstract Background and aims As drought threatens the yield and quality of maize (Zea mays L.), it is important to dissect the molecular basis of maize drought tolerance. Flavonoids, participate in the scavenging of oxygen free radicals and alleviate stress-induced oxidative damages. This study aims to dissect the function of flavonoids in the improvement of maize drought tolerance. Methods Using far-infrared imaging screening, we previously isolated a drought overly insensitivity (doi) mutant from an ethyl methanesulfonate (EMS)-mutagenized maize library and designated it as doi57. In this study, we performed a physiological characterization and transcriptome profiling of doi57 in comparison to corresponding wild-type B73 under drought stress. Results Under drought stress, doi57 seedlings displayed lower leaf-surface temperature (LST), faster water loss, and better performance in growth than B73. Transcriptome analysis reveals that key genes involved in flavonoid biosynthesis are enriched among differentially expressed genes in doi57. In line with these results, more flavonols and less hydrogen peroxide (H2O2) were accumulated in guard cells of doi57 than in those of B73 with the decrease of soil water content (SWC). Moreover, the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment. Additionally, doi57 seedlings had higher photosynthetic rates, stomatal conductance, transpiration rates, and water use efficiency than B73 exposed to drought stress, resulting in high biomass and greater root/shoot ratios in doi57 mutant plants. Conclusion Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Éderson Akio Kido ◽  
José Ribamar Costa Ferreira Neto ◽  
Roberta Lane de Oliveira Silva ◽  
Valesca Pandolfi ◽  
Ana Carolina Ribeiro Guimarães ◽  
...  

In the scope of the present work, four SuperSAGE libraries have been generated, using bulked root tissues from four drought-tolerant accessions as compared with four bulked sensitive genotypes, aiming to generate a panel of differentially expressed stress-responsive genes. Both groups were submitted to 24 hours of water deficit stress. The SuperSAGE libraries produced 8,787,315 tags (26 bp) that, after exclusion of singlets, allowed the identification of 205,975 unitags. Most relevant BlastN matches comprised 567,420 tags, regarding 75,404 unitags with 164,860 different ESTs. To optimize the annotation efficiency, the Gene Ontology (GO) categorization was carried out for 186,191 ESTs (BlastN against Uniprot-SwissProt), permitting the categorization of 118,208 ESTs (63.5%). In an attempt to elect a group of the best tags to be validated by RTqPCR, the GO categorization of the tag-related ESTs allowed thein silicoidentification of 213 upregulated unitags responding basically to abiotic stresses, from which 145 presented no hits after BlastN analysis, probably concerning new genes still uncovered in previous studies. The present report analyzes the sugarcane transcriptome under drought stress, using a combination of high-throughput transcriptome profiling by SuperSAGE with the Solexa sequencing technology, allowing the identification of potential target genes during the stress response.


2019 ◽  
Vol 39 ◽  
pp. 15-29 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Salem S. Alghamdi ◽  
Megahed H. Ammar ◽  
Qiwei Sun ◽  
Fei Teng ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128041 ◽  
Author(s):  
Lei Gong ◽  
Hongxia Zhang ◽  
Xiaoyan Gan ◽  
Li Zhang ◽  
Yuchao Chen ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3595
Author(s):  
Xinpeng Zhao ◽  
Shenglong Bai ◽  
Lechen Li ◽  
Xue Han ◽  
Jiahui Li ◽  
...  

As the diploid progenitor of common wheat, Aegilops tauschii is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported concerning the molecular mechanism of drought tolerance in Ae. tauschii. In this work, the drought tolerance of 155 Ae. tauschii accessions was firstly screened on the basis of their coleoptile lengths under simulated drought stress. Subsequently, two accessions (XJ002 and XJ098) with contrasting coleoptile lengths were selected and intensively analyzed on rate of water loss (RWL) as well as physiological characters, confirming the difference in drought tolerance at the seedling stage. Further, RNA-seq was utilized for global transcriptome profiling of the two accessions seedling leaves under drought stress conditions. A total of 6969 differentially expressed genes (DEGs) associated with drought tolerance were identified, and their functional annotations demonstrated that the stress response was mediated by pathways involving alpha-linolenic acid metabolism, starch and sucrose metabolism, peroxisome, mitogen-activated protein kinase (MAPK) signaling, carbon fixation in photosynthetic organisms, and glycerophospholipid metabolism. In addition, DEGs with obvious differences between the two accessions were intensively analyzed, indicating that the expression level of DEGs was basically in alignment with the physiological changes of Ae. tauschii under drought stress. The results not only shed fundamental light on the regulatory process of drought tolerance in Ae. tauschii, but also provide a new gene resource for improving the drought tolerance of common wheat.


Sign in / Sign up

Export Citation Format

Share Document