Faculty Opinions recommendation of Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia.

Author(s):  
Jan Starý ◽  
Barbora Vakrmanova
Blood ◽  
2018 ◽  
Vol 131 (3) ◽  
pp. 289-300 ◽  
Author(s):  
Arnaud Petit ◽  
Amélie Trinquand ◽  
Sylvie Chevret ◽  
Paola Ballerini ◽  
Jean-Michel Cayuela ◽  
...  

Key Points In pediatric T-ALL, oncogenetic markers, MRD, and WBC count are independent predictors of outcome. These factors should be used together for individual treatment stratification.


2010 ◽  
Vol 9 (1) ◽  
pp. 105 ◽  
Author(s):  
Amanda L Cleaver ◽  
Alex H Beesley ◽  
Martin J Firth ◽  
Nina C Sturges ◽  
Rebecca A O'Leary ◽  
...  

2019 ◽  
Vol 74 ◽  
pp. 100647 ◽  
Author(s):  
Jordy C.G. van der Zwet ◽  
Valentina Cordo' ◽  
Kirsten Canté-Barrett ◽  
Jules P.P. Meijerink

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kehan Li ◽  
Cunte Chen ◽  
Rili Gao ◽  
Xibao Yu ◽  
Youxue Huang ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of leukemia with poor prognosis, and biomarkers and novel therapeutic targets are urgently needed for this disease. Our previous studies have found that inhibition of the B-cell leukemia/lymphoma 11B (BCL11B) gene could significantly promote the apoptosis and growth retardation of T-ALL cells, but the molecular mechanism underlying this effect remains unclear. This study intends to investigate genes downstream of BCL11B and further explore its function in T-ALL cells. We found that PTK7 was a potential downstream target of BCL11B in T-ALL. Compared with the healthy individuals (HIs), PTK7 was overexpressed in T-ALL cells, and BCL11B expression was positively correlated with PTK7 expression. Importantly, BCL11B knockdown reduced PTK7 expression in T-ALL cells. Similar to the effects of BCL11B silencing, downregulation of PTK7 inhibited cell proliferation and induced apoptosis in Molt-4 cells via up-regulating the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p27. Altogether, our studies suggest that PTK7 is a potential downstream target of BCL11B, and downregulation of PTK7 expression via inhibition of the BCL11B pathway induces growth retardation and apoptosis in T-ALL cells.


2015 ◽  
Vol 208 (1-2) ◽  
pp. 52-53 ◽  
Author(s):  
Xiaolin Ma ◽  
Lijun Wen ◽  
Lili Wu ◽  
Qingrong Wang ◽  
Hong Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document