scholarly journals Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia

Blood ◽  
2018 ◽  
Vol 131 (3) ◽  
pp. 289-300 ◽  
Author(s):  
Arnaud Petit ◽  
Amélie Trinquand ◽  
Sylvie Chevret ◽  
Paola Ballerini ◽  
Jean-Michel Cayuela ◽  
...  

Key Points In pediatric T-ALL, oncogenetic markers, MRD, and WBC count are independent predictors of outcome. These factors should be used together for individual treatment stratification.

Blood ◽  
2014 ◽  
Vol 124 (4) ◽  
pp. 567-578 ◽  
Author(s):  
Rui D. Mendes ◽  
Leonor M. Sarmento ◽  
Kirsten Canté-Barrett ◽  
Linda Zuurbier ◽  
Jessica G. C. A. M. Buijs-Gladdines ◽  
...  

Key Points Microdeletions represent an additional inactivation mechanism for PTEN in human T-cell acute lymphoblastic leukemia. PTEN microdeletions are RAG-mediated aberrations.


2010 ◽  
Vol 9 (1) ◽  
pp. 105 ◽  
Author(s):  
Amanda L Cleaver ◽  
Alex H Beesley ◽  
Martin J Firth ◽  
Nina C Sturges ◽  
Rebecca A O'Leary ◽  
...  

2017 ◽  
Vol 1 (12) ◽  
pp. 733-747 ◽  
Author(s):  
Laurent Renou ◽  
Pierre-Yves Boelle ◽  
Caroline Deswarte ◽  
Salvatore Spicuglia ◽  
Aissa Benyoucef ◽  
...  

Key Points TLX3 transactivates LINC00478, the host gene of oncogenic miR-125b-2 in T-ALL. TLX3 and miR-125b contribute to the differentiation arrest and the expansion of transformed T cells.


2017 ◽  
Vol 1 (20) ◽  
pp. 1760-1772 ◽  
Author(s):  
Xavier Cahu ◽  
Julien Calvo ◽  
Sandrine Poglio ◽  
Nais Prade ◽  
Benoit Colsch ◽  
...  

Key Points BM niches differentially support T-ALL. BM niches differentially protect T-ALL cells from chemotherapy.


Blood ◽  
2016 ◽  
Vol 127 (15) ◽  
pp. 1907-1911 ◽  
Author(s):  
Cristina Mirantes ◽  
Maria Alba Dosil ◽  
David Hills ◽  
Jian Yang ◽  
Núria Eritja ◽  
...  

Key Points CD45-driven expression of Cre generates the first mouse model that allows specific and exclusive deletion of Pten in hematopoietic cells. Pten deletion in CD45-expressing cells causes T-cell acute lymphoblastic leukemia, but no other hematologic malignancies.


Blood ◽  
2013 ◽  
Vol 122 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Pieter Van Vlierberghe ◽  
Alberto Ambesi-Impiombato ◽  
Kim De Keersmaecker ◽  
Michael Hadler ◽  
Elisabeth Paietta ◽  
...  

Key Points Integrated genomic profiling identifies high-risk adult T-ALL patients with poor response to intensified chemotherapy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1083-1083 ◽  
Author(s):  
Arnaud Petit ◽  
Amélie Trinquand ◽  
Sylvie Chevret ◽  
Paola Fabiola Ballerini ◽  
Jean-Michel Cayuela ◽  
...  

Abstract Background: Risk stratification in childhood T-cell acute lymphoblastic leukemia (T-ALL) is crucial to drive treatment decisions. Since patients with induction failure or relapse are often refractory to further treatment, identifying high risk patients up-front will allow improved treatment. While minimal residual disease (MRD) is the strongest prognosis risk factor used after complete remission (CR), NOTCH1/FBXW7 (N/F) and RAS/PTEN (R/P) mutation profiles at diagnosis have recently been identified to predict outcome in adult T-ALL. Objective: to test whether an oncogenetic classifier using N/F and R/P mutations could improve the detection of children with T-ALL at risk of relapse. Methods: 405 patients with T-ALL aged from 1 to 14 years were treated according to FRALLE T guidelines (FRALLE Study group) between 2000 and 2010. Among them, 220 patients, for whom biological material at diagnosis was available, were tested retrospectively for N/F and R/P mutations. These study cohort patients were representative of overall FRALLE 2000 T-ALLs. CR was achieved in 213 patients. MRD (IgH-TCR markers) tested at CR (day 35) was available for 191 patients. MRD was <10-4 for 114 patients (60%) and ≥10-4 for 77 patients. Patients with N/F mutation and R/P germline (GL) were defined as oncogenetic low risk (LoR), while N/F GL and R/P GL or mutation and N/F mutation and R/P mutation were defined as high risk (HiR). Results: 111 patients were classified as LoR and 109 as HiR. Five-year-CIR and DFS were respectively 35.5% (95% CI, 26.7-44.3) and 59% (95%CI, 50.2-69.6) for HiR versus 13% (95% CI, 6.8-19.2) and 86.8% (80.5-93.5) for the LoR group (Figures A and B). HiR patients were significantly associated with MRD ≥ 10-4 (p=0.0004) and higher risk of relapse (p=0.00002). Among patients with MRD ≥ 10-4, HiR feature worsened the risk of relapse: 5-year-CIR and DFS were respectively 42.8% (95% CI, 28.9-56.7) and 71.1% (95%CI, 56.0-90.2) in HiR versus 28.9% (95% CI, 11.7-46.1) and 50.9% (95%CI, 38.4-67.6) in the LoR group. Among patients with MRD <10-4, 5-year-CIR and DFS were respectively 28.9 % (95% CI, 15.0-42.8) and 71.0% (95%CI, 58.4-86.3) in HiR group versus 4.4% (95% CI, 0-9.2) and 95.5% (95%CI, 90.7-1.00) in LoR group (Figures C and D). As such, the classifier allowed identification of 63% of very low risk patients amongst the MRD<10-4 population. Prognostic values of new oncogenetic risk factors were then analyzed with conventional factors. By univariate analysis, factors identified to predict relapse were male gender (p=0.036), WBC count ≥ 200 G/L (p=0.023), chemoresistance at day 21 (p=0.007), MRD ≥10-4 (p=0.0006) and oncogenetic HiR (p<0.0001). A multivariable cox model including these variables selected the classifier together with WBC count, day 21 chemo-sensitivity and MRD. Based on a stepwise selection procedure, the three most discriminating variables were classifier, WBC count and MRD. The cause specific Hazard Ratio (HR) was 3.22 (95% CI, 1.64-6.28) for oncogenetic HiR versus LoR (p=0.0006), 2.30 (95% CI, 1.26-4.20) for MRD≥10-4 versus MRD<10-4(p=0.0070) and 1.85 (95% CI, 1.01-3.37) for WBC≥200G/L versus <200 G/L (p=0.0456). Based on these three parameters, 8 subsets of patients were defined according to the estimated 5-year CIR. The 58 patients (30%) associating WBC count < 200G/L, classifier LoR and MRD<10-4 were at very low risk of relapse, with a 5-y-CIR of 1.7%. Patients harboring at least one of: WBC count ≥200G/L, classifier HiR or MRD>10-4, demonstrated an increasing CIR, up to 45.8% if all three were associated. Conclusion: in childhood T-ALL, oncogenetic classification using N/F and R/P mutation profiles is an independent predictor of relapse. When combined with MRD and WBC count ≥200 G/L, it significantly improved relapse prediction, particularly amongst the 60% of T-ALLs with MRD <10-4 at day 35. Appropriate integrating these 3 factors, will help optimize treatment. Figure Figure. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 15 (8) ◽  
pp. 2786-2791 ◽  
Author(s):  
V Conter ◽  
M Schrappe ◽  
M Aricó ◽  
A Reiter ◽  
C Rizzari ◽  
...  

PURPOSE The ALL-BFM 90 and AIEOP-ALL 91 studies share the same treatment backbone and have 5-year event-free survival (EFS) rates close to 75%. This study evaluated the impact of differing presymptomatic CNS therapies in T-cell acute lymphoblastic leukemia (T-ALL) patients with a good response to prednisone (PGR) according to WBC count and Berlin-Frankfurt-Münster (BFM) risk factor (RF). PATIENTS A total of 192 patients (141 boys; median age, 7.5 years) with T-ALL, PGR, RF less than 1.7, and no CNS leukemia diagnosed between 1990 and 1995 were enrolled onto the ALL-BFM 90 (n = 123) or AIEOP-ALL 91 (n = 69) study. Presymptomatic CNS therapy consisted of cranial radiation (CRT) and intrathecal methotrexate (I.T. MTX) (11 doses) in the BFM study and of extended triple intrathecal therapy (T.I.T.) (17 doses) in the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) study. Patients were divided into a low-WBC group (WBC count < 100,000/microL) and a high-WBC group (WBC count > 100,000/microL). EFS was compared using the log-rank test. RESULTS For patients treated with CRT and I.T. MTX (BFM group), the 3-year EFS rate was 89.8% (SE = 3.5) for 99 patients in the low-WBC group versus 81.9% (SE = 8.2) in the high-WBC group (difference not significant). Conversely, for patients treated with T.I.T. alone (AIEOP group), the EFS rate was 80.6% (SE = 5.6) in 55 patients with a low WBC count versus 17.9% (SE = 11.0) in 14 patients with a high WBC count (P < .001). CONCLUSION These data suggest that CRT may not be necessary in PGR T-ALL patients with a WBC count less than 100,000/microL; on the contrary, in patients with a high count, extended T.I.T. may be inferior to CRT and I.T. MTX.


Blood ◽  
2019 ◽  
Vol 134 (16) ◽  
pp. 1323-1336 ◽  
Author(s):  
Michael Broux ◽  
Cristina Prieto ◽  
Sofie Demeyer ◽  
Marlies Vanden Bempt ◽  
Llucia Alberti-Servera ◽  
...  

Key Points Suz12 inactivation cooperates with JAK3 mutant signaling to drive T-ALL development. JAK3/Suz12 mutant leukemia cells show increased sensitivity to PI3K/mTOR, VEGF receptor, and HSP90 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document