Clinico-Hematological Profile and Copy Number Abnormalities in a Cohort of STIL-TAL1 and NUP214-ABL1 Positive Pediatric T-Cell Acute Lymphoblastic Leukemia

Author(s):  
Nilamani Patra ◽  
Minu Singh ◽  
Pankaj Sharma ◽  
Amita Trehan ◽  
Shano Naseem ◽  
...  
2011 ◽  
Vol 29 (12) ◽  
pp. 1643-1649 ◽  
Author(s):  
Tomasz Szczepański ◽  
Vincent H.J. van der Velden ◽  
Esmé Waanders ◽  
Roland P. Kuiper ◽  
Pieter Van Vlierberghe ◽  
...  

Purpose Relapse of childhood T-cell acute lymphoblastic leukemia (T-ALL) often occurs during treatment, but in some cases, leukemia re-emerges off therapy. On the basis of previous analyses of T-cell receptor (TCR) gene rearrangement patterns, we hypothesized that some late recurrences of T-ALL might in fact represent second leukemias. Patients and Methods In 22 patients with T-ALL who had late relapses (at least 2.5 years from diagnosis), we studied TCR gene rearrangement status at first and second presentation, NOTCH1 gene mutations, and the presence of the SIL-TAL1 gene fusion. We performed genome-wide copy number and homozygosity analysis by using oligonucleotide- and single nucleotide polymorphism (SNP) –based arrays. Results We found evidence of a common clonal origin between diagnosis and relapse in 14 patients (64%). This was based on concordant TCR gene rearrangements (12 patients) or concordant genetic aberrations, as revealed by genome-wide copy number analysis (two patients). In the remaining eight patients (36%), TCR gene rearrangement sequences had completely changed between diagnosis and relapse, and gene copy number analysis showed markedly different patterns of genomic aberrations, suggesting a second T-ALL rather than a resurgence of the original clone. Moreover, NOTCH1 mutation patterns were different at diagnosis and relapse in five of these eight patients. In one patient with a second T-ALL, SNP analysis revealed a germline del(11)(p12;p13), a known recurrent aberration in T-ALL. Conclusion More than one third of late T-ALL recurrences are, in fact, second leukemias. Germline genetic abnormalities might contribute to the susceptibility of some patients to develop T-ALL.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kehan Li ◽  
Cunte Chen ◽  
Rili Gao ◽  
Xibao Yu ◽  
Youxue Huang ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of leukemia with poor prognosis, and biomarkers and novel therapeutic targets are urgently needed for this disease. Our previous studies have found that inhibition of the B-cell leukemia/lymphoma 11B (BCL11B) gene could significantly promote the apoptosis and growth retardation of T-ALL cells, but the molecular mechanism underlying this effect remains unclear. This study intends to investigate genes downstream of BCL11B and further explore its function in T-ALL cells. We found that PTK7 was a potential downstream target of BCL11B in T-ALL. Compared with the healthy individuals (HIs), PTK7 was overexpressed in T-ALL cells, and BCL11B expression was positively correlated with PTK7 expression. Importantly, BCL11B knockdown reduced PTK7 expression in T-ALL cells. Similar to the effects of BCL11B silencing, downregulation of PTK7 inhibited cell proliferation and induced apoptosis in Molt-4 cells via up-regulating the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p27. Altogether, our studies suggest that PTK7 is a potential downstream target of BCL11B, and downregulation of PTK7 expression via inhibition of the BCL11B pathway induces growth retardation and apoptosis in T-ALL cells.


2015 ◽  
Vol 208 (1-2) ◽  
pp. 52-53 ◽  
Author(s):  
Xiaolin Ma ◽  
Lijun Wen ◽  
Lili Wu ◽  
Qingrong Wang ◽  
Hong Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document