Faculty Opinions recommendation of Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.

Author(s):  
Valeri Vasioukhin
2017 ◽  
Vol 7 (2) ◽  
pp. e1380764 ◽  
Author(s):  
Saul J. Priceman ◽  
Ethan A. Gerdts ◽  
Dileshni Tilakawardane ◽  
Kelly T. Kennewick ◽  
John P. Murad ◽  
...  

2016 ◽  
Vol 24 ◽  
pp. S161
Author(s):  
Dileshni Tilakawardane ◽  
Ethan A. Gerdts ◽  
Anthony K. Park ◽  
Wen-Chung Chang ◽  
Sarah Wright ◽  
...  

Author(s):  
Ethan Gerdts ◽  
Saul Priceman ◽  
Dileshni Tilakawardane ◽  
Anthony Park ◽  
Wen-Chung Chang ◽  
...  

2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 125-125
Author(s):  
Vivek Narayan ◽  
Julie Barber-Rotenberg ◽  
Joseph Fraietta ◽  
Wei-Ting Hwang ◽  
Simon F. Lacey ◽  
...  

125 Background: Prostate specific membrane antigen (PSMA) is a highly expressed tumor-associated antigen potentially amenable to chimeric antigen receptor-modified T (CAR-T) cell therapy for castration-resistant prostate cancer (CRPC). However, a primary challenge to the success of CAR-T therapy in CRPC is the immunosuppressive microenvironment, characterized by high levels of TGFβ. The immunosuppressive functions of TGFβ can be inhibited in T cells using a dominant negative TGFβ receptor (TGFβRdn), thereby enhancing antitumor immunity. Methods: We conducted a first-in-human phase 1 clinical trial to evaluate the feasibility, safety and preliminary efficacy of PSMA-directed/TGFβ-insensitive CAR-T cells (CART-PSMA-TGFβRdn) in patients with metastatic CRPC (NCT03089203). In a 3+3 dose-escalation design, patients received a single dose of 1-3 x 107/m2 (Cohort 1) or 1-3 x 108/m2 (Cohort 2) CART-PSMA-TGFβRdn cells without lymphodepleting (LD) chemotherapy. In Cohort 3, one patient received 1-3 x 108/m2 CART-PSMA-TGFβRdn cells following a LD chemotherapy regimen of cyclophosphamide and fludarabine (Cy/Flu). In Cohort -3, three patients received 1-3 x 107/m2 CART-PSMA-TGFβRdn cells following Cy/Flu. Patients underwent metastatic tumor biopsies at baseline and on day 10 following treatment. Quantitative PCR of CART-PSMA-TGFβRdn DNA was performed at serial timepoints to evaluate for CAR-T expansion and persistence in peripheral blood and trafficking to target tissues. Multiplex cytokine analysis assessed CART-PSMA-TGFβRdn bioactivity. Results: Ten patients received CART-PSMA-TGFβRdn therapy across dose-level cohorts. All CART-PSMA-TGFβRdn infusion products met target transduction efficiency. Evaluation of CAR-T cellular kinetics demonstrated dose-dependent peripheral blood T cell expansion, as well as tumor tissue trafficking in post-treatment tumor biopsies. At Cohort 2 and above, 5 of 7 treated patients developed grade ≥2 cytokine release syndrome (CRS). Marked increases in inflammatory cytokines (IL-6, IL-15, IL-2, IFNγ) correlated with high-grade CRS events. One grade 5 adverse event (sepsis) occurred in Cohort 3. PSA decline was observed in 6 of 10 patients (median decline -33.2%, range -11.6% to -98.3%), and PSA30 response occurred in 4 of 10 patients (including one patient achieving PSA < 0.1 ng/mL). Conclusions: Adoptive cellular therapy with CART-PSMA-TGFβRdn is safe and feasible in patients with metastatic CRPC. A dose-dependent and lymphodepletion chemotherapy-dependent relationship was observed with CART-PSMA-TGFβRdn cell expansion, cytokine expression, CRS, and anti-tumor effect. Correlative cell trafficking and paired tumor Nanostring analyses will be presented. Future clinical investigations seek to enhance anti-tumor efficacy, while optimizing the therapeutic window. Clinical trial information: NCT03089203.


2016 ◽  
Vol 126 (8) ◽  
pp. 3036-3052 ◽  
Author(s):  
Meenakshi Hegde ◽  
Malini Mukherjee ◽  
Zakaria Grada ◽  
Antonella Pignata ◽  
Daniel Landi ◽  
...  
Keyword(s):  
T Cells ◽  

2020 ◽  
Vol 38 (6_suppl) ◽  
pp. TPS269-TPS269
Author(s):  
Vivek Narayan ◽  
Whitney Gladney ◽  
Gabriela Plesa ◽  
Neha Vapiwala ◽  
Erica L. Carpenter ◽  
...  

TPS269 Background: Adoptive immunotherapy with Chimeric Antigen Receptor (CAR)-T cells is a novel approach for the treatment of prostate cancer. However, the prostate cancer immunosuppressive microenvironment, including high levels of TGFβ, may limit the therapeutic potential of re-directed T cells upon tumor infiltration. The inhibition of TGFβ signaling via co-expression of a dominant negative TGFβ receptor (TGFβRdn) can enhance antitumor immunity. Co-expression of TGFβRdn on PSMA-redirected CAR-T cells in in vivo disseminated tumor models led to increased T cell proliferation, enhanced cytokine secretion, resistance to exhaustion, long-term persistence, and greater induction of tumor eradication. Methods: We are conducting a first-in-human phase 1 clinical trial evaluating the safety and preliminary efficacy of lentivirally-transduced PSMA-redirected/TGFβ-insensitive CAR-T cells (CART-PSMA-TGFβRdn) in metastatic CRPC (NCT03089203). In a 3+3 dose-escalation design, patients received a single dose of 1-3 x 107/m2 (Cohort 1) or 1-3 x 108/m2 (Cohort 2) CART-PSMA-TGFβRdn cells without lymphodepleting chemotherapy. In Cohort 3, 1-3 x 108/m2 CART-PSMA-TGFβRdn cells are administered following a lymphodepleting chemotherapy regimen of cyclophosphamide and fludarabine (cy/flu). A currently accruing modified protocol seeks to optimize the therapeutic window with CART-PSMA-TGFβRdn (CAR-T dose of 1-3 x 107/m2 following lymphodepleting cy/flu). Eight patients have received a single dose of CART-PSMA-TGFβRdn. CAR-T expansion and persistence in peripheral blood and trafficking to target tissues is evaluated via quantitative PCR of CART-PSMA-TGFβRdn DNA. Bioactivity of CAR-T cells in peripheral blood is evaluated via multiplex immunoassays. Additional correlative analyses will interrogate the therapeutic contribution of TGFβRdn, as well as early markers of response and resistance to CART-PSMA-TGFβRdn therapy. Clinical trial information: NCT03089203.


2019 ◽  
Vol 129 (8) ◽  
pp. 3464-3464 ◽  
Author(s):  
Meenakshi Hegde ◽  
Malini Mukherjee ◽  
Zakaria Grada ◽  
Antonella Pignata ◽  
Daniel Landi ◽  
...  
Keyword(s):  
T Cells ◽  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5611-5611
Author(s):  
Anja Feldmann ◽  
Anja Hoffmann ◽  
Enrico Kittel-Boselli ◽  
Ralf Bergmann ◽  
Stefanie Koristka ◽  
...  

Hematological malignancies are successfully treated with chimeric antigen receptor (CAR) armed T cells. Despite the clinical success, CAR T cell therapy struggles still with some problems including the selection of tumor escape variants and on-target, off-tumor side reactions as well as massive cytokine release and uncontrollability of CAR T cell activity in the patients. In order to enable controllability of CAR T cells and to avoid unspecific side effects, we established a novel switchable, split and adaptable CAR platform technology, termed RevCAR system. The novel RevCARs lack the single chain variable fragment (scFv) commonly used as extracellular domain in conventional CARs. Instead of the scFv, RevCARs contain only a small peptide epitope as extracellular portion. This design reduces the CAR size, avoids unspecific antigen binding and prevents antigen independent tonic signaling caused by scFv dimerization. As RevCAR T cells do not recognize anything, they are per se inert. Only in the presence of a corresponding bispecific antibody based target module (RevTM) they can be specifically redirected to tumor cells. Therefor RevTMs consist of two scFvs. One recognizes the RevCAR peptide epitope and the other one simultaneously binds to a tumor associated antigen (TAA). By dosing of the RevTM, which has a very short half-life, the reactivity of RevCAR T cells can be switched on and off reversibly. Another advantage is that the RevCAR system can be flexibly adapted to any tumor antigen simply by exchanging the RevTM. Furthermore, the small RevCAR size is favorable for inserting more than one RevCAR in the same T cell thus facilitating the mode of gated targeting which is a highly attractive approach to minimize the risk for on-target, off-tumor toxicities against healthy tissues and to increase tumor specificity of conventional CAR T cells. For 'AND' gate targeting via the RevCAR system, two different RevCARs were constructed and expressed simultaneously in the same T cell. The two RevCARs differed with respect to the extracellular peptide epitope and the intracellular signaling domain. Moreover, the respective transmembrane domain was selected to isolate the respective RevCAR signal. The first RevCAR is designed to transmit the activation signal, the second RevCAR to deliver a costimulatory signal. For efficient RevCAR T cell activation, both RevCARs must be engaged via their respective RevTM which on the one hand binds to one of the two RevCAR epitopes and on the other hand to one of two TAAs expressed on the same target cell. Here, we present two RevCAR/RevTM systems for retargeting of AML cells as well as solid tumor cells including via gated targeting. In summary, we show proof of concept for a novel switchable RevCAR system that can be used for retargeting of AML cells as well as solid tumors. The novel modular RevCAR platform is characterized by small size, lacks unwanted tonic signaling effects, allows the control of RevCAR T cell activity, enables gated targeting strategies, and can be adapted to any tumor antigen and tumor type. Disclosures Koristka: Intellia Therapeutics: Employment. Bachmann:GEMoaB Monoclonals: Equity Ownership, Patents & Royalties.


Author(s):  
Gaia Zuccolotto ◽  
Alessandro Penna ◽  
Giulio Fracasso ◽  
Isabella Monia Montagner ◽  
Debora Carpanese ◽  
...  

Despite advances in the understanding of its molecular pathophysiology, prostate cancer remains largely incurable, highlighting the need for novel therapies. We developed a chimeric antigen receptor (CAR) specific for prostate specific membrane antigen (PSMA), a glycoprotein that is overexpressed in prostate cancer, which expression involves neovasculature of several tumor entities, thus envisaging an additional antiangiogenic effect. To optimize the CAR design, we compared two CARs with signaling domains containing one or two T cell costimulatory elements, in addition to CD3&zeta;. Conversely, what has been described for other CARs, a third-generation CAR (containing CD28 and 41BB co-signaling domains) induced a potent antitumor effect similar to a second-generation CAR (containing CD28 co-signaling domain), though we observed a detrimental effect of the additional costimulatory domain that was attributed to increased activation-induced cell death (AICD). This &ldquo;super-stimulation&rdquo; resulted in exhaustion of cells, higher frequencies of cell death and, more importantly, the impossibility of sufficiently expanding the CAR cells to obtain the minimum number of cells requested for in vivo therapies. While the superiority of 2nd and 3rd generation over 1st generation CAR T cells has been clearly shown in both preclinical and clinical studies, the optimal combination of costimulatory domains for 3rd generation CAR-T cells must still be defined and should be evaluated case-by-case in order to fine-tune immunotherapy approaches.


Sign in / Sign up

Export Citation Format

Share Document