scholarly journals PSMA-Specific Car-Engineered T Cells for Prostate Cancer: CD28 outperforms combined CD28-41BB “Super- stimulation”

Author(s):  
Gaia Zuccolotto ◽  
Alessandro Penna ◽  
Giulio Fracasso ◽  
Isabella Monia Montagner ◽  
Debora Carpanese ◽  
...  

Despite advances in the understanding of its molecular pathophysiology, prostate cancer remains largely incurable, highlighting the need for novel therapies. We developed a chimeric antigen receptor (CAR) specific for prostate specific membrane antigen (PSMA), a glycoprotein that is overexpressed in prostate cancer, which expression involves neovasculature of several tumor entities, thus envisaging an additional antiangiogenic effect. To optimize the CAR design, we compared two CARs with signaling domains containing one or two T cell costimulatory elements, in addition to CD3ζ. Conversely, what has been described for other CARs, a third-generation CAR (containing CD28 and 41BB co-signaling domains) induced a potent antitumor effect similar to a second-generation CAR (containing CD28 co-signaling domain), though we observed a detrimental effect of the additional costimulatory domain that was attributed to increased activation-induced cell death (AICD). This “super-stimulation” resulted in exhaustion of cells, higher frequencies of cell death and, more importantly, the impossibility of sufficiently expanding the CAR cells to obtain the minimum number of cells requested for in vivo therapies. While the superiority of 2nd and 3rd generation over 1st generation CAR T cells has been clearly shown in both preclinical and clinical studies, the optimal combination of costimulatory domains for 3rd generation CAR-T cells must still be defined and should be evaluated case-by-case in order to fine-tune immunotherapy approaches.

2021 ◽  
Vol 11 ◽  
Author(s):  
Gaia Zuccolotto ◽  
Alessandro Penna ◽  
Giulio Fracasso ◽  
Debora Carpanese ◽  
Isabella Monia Montagner ◽  
...  

Prostate cancer (PCa) is the second leading cause of malignancy-related mortality in males in the Western world. Although treatment like prostatectomy and radiotherapy for localized cancer have good results, similar positive outcomes are not achieved in metastatic PCa. Consequently, these aggressive and metastatic forms of PCa urgently need new methods of treatment. We already described an efficient and specific second-generation (2G) Chimeric Antigen Receptor (CAR) against Prostate Specific Membrane Antigen (PSMA), a glycoprotein overexpressed in prostate cancer and also present on neovasculature of several tumor entities. In an attempt to improve efficacy and in vivo survival of anti-PSMA 2G CAR-T cells, we developed a third generation (3G) CAR containing two costimulatory elements, namely CD28 and 4-1BB co-signaling domains, in addition to CD3ζ. Differently from what described for other 3G receptors, our third generation CAR disclosed an antitumor activity in vitro similar to the related 2G CAR that comprises the CD28 co-signaling domain only. Moreover, the additional costimulatory domain produced detrimental effects, which could be attributed to an increased activation-induced cell death (AICD). Indeed, such “superstimulation” resulted in an exhausted phenotype of CAR-T cells, after prolonged in vitro restimulation, a higher frequency of cell death, and an impairment in yielding sufficient numbers of transgenic T lymphocytes. Thus, the optimal combination of costimulatory domains for CAR development should be assessed cautiously and evaluated case-by-case.


2016 ◽  
Vol 24 (6) ◽  
pp. 1135-1149 ◽  
Author(s):  
Tessa Gargett ◽  
Wenbo Yu ◽  
Gianpietro Dotti ◽  
Eric S Yvon ◽  
Susan N Christo ◽  
...  

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yonggui Tian ◽  
Feng Li ◽  
Lingxiao Zhou ◽  
...  

Abstract Background Chimeric antigen receptor T (CAR-T) cell therapy has limited effects in the treatment of solid tumors. Sulforaphane (SFN) is known to play an important role in inhibiting tumor growth, but its effect on CAR-T cells remains unclear. The goal of the current study was to determine whether combined CAR-T cells and SFN could provide antitumor efficacy against solid tumors. Methods The effect of combined SFN and CAR-T cells was determined in vitro using a co-culture system and in vivo using a xenograft mouse model. We further validated the effects of combination therapy in patients with cancer. Results In vitro, the combination of SFN and CAR-T cells resulted in enhanced cytotoxicity and increased lysis of tumor cells. We found that SFN suppressed programmed cell death 1 (PD-1) expression in CAR-T cells and potentiated antitumor functions in vitro and in vivo. As a ligand of PD-1, programmed cell death ligand 1 (PD-L1) expression was also decreased in tumor cells after SFN treatment. In addition, β-TrCP was increased by SFN, resulting in higher activation of ubiquitination-mediated proteolysis of PD-L1, which induced PD-L1 degradation. The combination of SFN and CAR-T cell therapy acted synergistically to promote better immune responses in vivo compared with monotherapy. In clinical treatments, PD-1 expression was lower, and proinflammatory cytokine levels were higher in patients with various cancers who received CAR-T cells and took SFN orally than that in the control group. Conclusion SFN improves the cytotoxicity of CAR-T cells by modulating the PD-1/PD-L1 pathway, which may provide a promising strategy for the combination of SFN with CAR-T cells for cancer immunotherapy.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1029-A1030
Author(s):  
Gail Petuna Risbridger ◽  
Laura Helen Porter ◽  
Joe Zhu ◽  
David Byrne ◽  
Natalie Lister ◽  
...  

Abstract Chimeric antigen receptor T (CAR T) cell therapy is an adoptive immunotherapy that has led to new treatments for lymphoma, leukemia, and other blood cancers; however, its efficacy for prostate cancer remains unproven. Here we report pre-clinical evidence of the efficacy of CAR T cell therapy against the Lewis Y antigen (LeY) using patient-derived models of prostate cancer. To assess the expression of LeY on prostate tumours, we performed immunohistochemistry on a cohort of 41 patient-derived xenografts (PDXs). Cytoplasmic and membrane expression were separately assessed and quantified, for each patient. Overall, 61% (25/41) of PDXs were positive for membrane LeY expression, of which 18 PDXs had greater than 50% membrane-positive cells, and considered most suitable to detection and stable binding by anti-LeY CAR T’s. To determine the in vitro sensitivity to CAR T cytotoxicity, we selected 4 PDXs with high and 2 PDXs with low LeY expression using 3 androgen receptor (AR)-positive adenocarcinomas and 3 AR-negative tumors expressing neuroendocrine markers. Next we established organoids for in vitro co-culture assays where organoids were co-incubated with an equal number of anti-LeY+ CAR T cells or Empty vector control CAR T cells (Ev CAR T). Using time-lapse microscopy we reported destruction of organoids by LeY+ CAR T cells as indicated by their morphological collapse and uptake of propidium iodide from the culture medium; control Ev CAR T cells produced no cytotoxicity. Over the 48h assay, the level of target cell death of the LeY+ organoids was correlated to the intensity LeY surface expression. Target cell death mediated by the CAR T cells required perforin and granzyme B, as potent and highly specific small molecule inhibitors of perforin (SN34960) and granzyme B (C20) applied alone or in combination greatly decreased PI uptake, indicating organoid survival. Neither inhibitor adversely affected CAR T cell viability as measured by PI and Annexin V staining. This demonstrated canonical activation of granule exocytosis pathway by the CAR T cells, leading to organoid cell death. To assess CAR T cell efficacy in vivo, we selected one PDX with high LeY expression. Monotherapy with CAR T cells failed to decrease tumour volume compared to vehicle control. However, CAR T cells given after a single dose of the chemotherapeutic agent carboplatin greatly and durably reduced tumour burden, with residual tumour mass being less than 1% of their original size (0.56 ± 0.23% of tumour volume at the start of treatment). Overall, these data provide preclinical evidence that: i) high membrane expression of LeY correlates with in vitro and in vivo CAR T cell-induced tumour cell death via the canonical perforin/granzyme B mechanism; and, ii) membrane LeY can be used as a biomarker for patient selection.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A124-A124
Author(s):  
Letizia Giardino ◽  
Ryan Gilbreth ◽  
Cui Chen ◽  
Erin Sult ◽  
Noel Monks ◽  
...  

BackgroundChimeric antigen receptor (CAR)-T therapy has yielded impressive clinical results in hematological malignancies and it is a promising approach for solid tumor treatment. However, toxicity, including on-target off-tumor antigen binding, is a concern hampering its broader use.MethodsIn selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CAR bearing a low and high affinity single-chain variable fragment (scFv,) binding to the same epitope and cross-reactive with murine GPC3. We characterized low and high affinity CAR-T cells immunophenotype and effector function in vitro, followed by in vivo efficacy and safety studies in hepatocellular carcinoma (HCC) xenograft models.ResultsCompared to the high-affinity construct, the low-affinity CAR maintained cytotoxic function but did not show in vivo toxicity. High-affinity CAR-induced toxicity was caused by on-target off-tumor binding, based on the evidence that high-affinity but not low-affinity CAR, were toxic in non-tumor bearing mice and accumulated in organs with low expression of GPC3. To add another layer of safety, we developed a mean to target and eliminate CAR-T cells using anti-TNFα antibody therapy post-CAR-T infusion. This antibody functioned by eliminating early antigen-activated CAR-T cells, but not all CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from anti-tumor efficacy.ConclusionsSelecting a domain with higher off-rate improved the quality of the CAR-T cells by maintaining cytotoxic function while reducing cytokine production and activation upon antigen engagement. By exploring additional traits of the CAR-T cells post-activation, we further identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that would eliminate early activated CAR-T following antigen engagement in vivo. By combining the reduced affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.Ethics ApprovalAll animal experiments were conducted in a facility accredited by the Association for Assessment of Laboratory Animal Care (AALAC) under Institutional Animal Care and Use Committee (IACUC) guidelines and appropriate animal research approval.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naomi S. Sta Maria ◽  
Leslie A. Khawli ◽  
Vyshnavi Pachipulusu ◽  
Sharon W. Lin ◽  
Long Zheng ◽  
...  

AbstractQuantitative in vivo monitoring of cell biodistribution offers assessment of treatment efficacy in real-time and can provide guidance for further optimization of chimeric antigen receptor (CAR) modified cell therapy. We evaluated the utility of a non-invasive, serial 89Zr-oxine PET imaging to assess optimal dosing for huLym-1-A-BB3z-CAR T-cell directed to Lym-1-positive Raji lymphoma xenograft in NOD Scid-IL2Rgammanull (NSG) mice. In vitro experiments showed no detrimental effects in cell health and function following 89Zr-oxine labeling. In vivo experiments employed simultaneous PET/MRI of Raji-bearing NSG mice on day 0 (3 h), 1, 2, and 5 after intravenous administration of low (1.87 ± 0.04 × 106 cells), middle (7.14 ± 0.45 × 106 cells), or high (16.83 ± 0.41 × 106 cells) cell dose. Biodistribution (%ID/g) in regions of interests defined over T1-weighted MRI, such as blood, bone, brain, liver, lungs, spleen, and tumor, were analyzed from PET images. Escalating doses of CAR T-cells resulted in dose-dependent %ID/g biodistributions in all regions. Middle and High dose groups showed significantly higher tumor %ID/g compared to Low dose group on day 2. Tumor-to-blood ratios showed the enhanced extravascular tumor uptake by day 2 in the Low dose group, while the Middle dose showed significant tumor accumulation starting on day 1 up to day 5. From these data obtained over time, it is apparent that intravenously administered CAR T-cells become trapped in the lung for 3–5 h and then migrate to the liver and spleen for up to 2–3 days. This surprising biodistribution data may be responsible for the inactivation of these cells before targeting solid tumors. Ex vivo biodistributions confirmed in vivo PET-derived biodistributions. According to these studies, we conclude that in vivo serial PET imaging with 89Zr-oxine labeled CAR T-cells provides real-time monitoring of biodistributions crucial for interpreting efficacy and guiding treatment in patient care.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


Leukemia ◽  
2021 ◽  
Author(s):  
Christos Georgiadis ◽  
Jane Rasaiyaah ◽  
Soragia Athina Gkazi ◽  
Roland Preece ◽  
Aniekan Etuk ◽  
...  

AbstractTargeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in ‘self-enrichment’ yielding populations 99.6% TCR−/CD3−/CD7−. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic ‘off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.


Sign in / Sign up

Export Citation Format

Share Document