scholarly journals Enzymatic Hydrolysis of Pneumococcal Capsular Polysaccharide Renders the Bacterium Vulnerable to Host Defense

2018 ◽  
Vol 86 (8) ◽  
Author(s):  
Dustin R. Middleton ◽  
Amy V. Paschall ◽  
Jeremy A. Duke ◽  
Fikri Y. Avci

ABSTRACTDespite a century of investigation,Streptococcus pneumoniaeremains a major human pathogen, causing a number of diseases, such as pneumonia, meningitis, and otitis media. Like many encapsulated pathogens, the capsular polysaccharide (CPS) ofS. pneumoniaeis a critical component for colonization and virulence in mammalian hosts. This study aimed to evaluate the protective role of a glycoside hydrolase, Pn3Pase, targeting the CPS of type 3S. pneumoniae, which is one of the most virulent serotypes. We have assessed the ability of Pn3Pase to degrade the capsule on a live type 3 strain. Throughin vitroassays, we observed that Pn3Pase treatment increases the bacterium's susceptibility to phagocytosis by macrophages and complement-mediated killing by neutrophils. We have demonstrated thatin vivoPn3Pase treatment reduces nasopharyngeal colonization and protects mice from sepsis caused by type 3S. pneumoniae. Due to the increasing shifts in serotype distribution, the rise in drug-resistant strains, and poor immune responses to vaccine-included serotypes, it is necessary to investigate approaches to combat pneumococcal infections. This study evaluates the interaction of pneumococcal CPS with the host at molecular, cellular, and systemic levels and offers an alternative therapeutic approach for diseases caused byS. pneumoniaethrough enzymatic hydrolysis of the CPS.

2001 ◽  
Vol 69 (1) ◽  
pp. 336-344 ◽  
Author(s):  
Yan Sun ◽  
Young-il Hwang ◽  
Moon H. Nahm

ABSTRACT Many pneumococcal capsular polysaccharides (PSs) are similar in structure, and a pneumococcal antibody often binds to all of the PSs with a similar structure. Yet, these cross-reactive antibodies may bind to the structurally related pneumococcal capsular PSs with an avidity too low to be effective. If memory B cells producing such weakly cross-reactive antibodies are elicited with pneumococcal conjugate vaccines, the memory cells for low-avidity antibodies could compromise the subsequent immune responses to the cross-reactive PS (original antigenic sin). To investigate these issues, we produced 14 hybridomas secreting monoclonal antibodies (MAbs) to the capsular PS ofStreptococcus pneumoniae serotype 6B by immunizing BALB/c mice with antigens containing 6B PS and studied their epitope, avidity, in vitro opsonizing capacity, in vivo protective capacity, and “antigen binding titer” by enzyme-linked immunosorbent assay (ELISA) of 6A and 6B capsular PSs. Six MAbs bound to the non-cross-reactive 6B-specific epitope, and seven MAbs bound to the cross-reactive epitope present in both 6A and 6B PSs One MAb (Hyp6BM6) revealed a novel epitope. This epitope was found on 6A PS in solution, but not on 6A PS adsorbed onto the plastic surface of the ELISA plates. The avidity of the MAb for 6A or 6B PS ranged from 7.8 × 106 M−1 to 4.1 × 1011M−1. No MAbs were weakly cross-reactive, since none of the cross-reactive MAbs showed any tendency toward having less avidity to 6A PS (the cross-reactive PS) than to 6B PS. Avidity influenced the results of several antibody assays. When all of the hybridomas were examined, avidity strongly correlated with the titer of a unit amount of MAb to bind antigen-coated ELISA plates (r = 0.91) or to opsonize pneumococci in vitro (r = −0.85). Because both assay results are avidity dependent, the ELISA and the opsonization assay results were strongly correlated (r= 0.91), regardless of avidity. Avidity also correlated with the potency of a MAb to passively protect mice against pneumococcal infections. When only the immunoglobulin G hybridomas were examined, little increase in opsonizing capacity and in vivo protective potency was observed above 109 M−1. Taken together, an ELISA measuring antigen binding titer may be an adequate measure of the protective immunity induced with pneumococcal vaccines, and the absence of a partially cross-reactive MAb suggests that antigenic sin may not be significant in responses to vaccines against the S. pneumoniae 6B serotype.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Susan Boyle-Vavra ◽  
Xue Li ◽  
Md Tauqeer Alam ◽  
Timothy D. Read ◽  
Julia Sieth ◽  
...  

ABSTRACTThe surface capsular polysaccharide (CP) is a virulence factor that has been used as an antigen in several successful vaccines against bacterial pathogens. A vaccine has not yet been licensed againstStaphylococcus aureus, although two multicomponent vaccines that contain CP antigens are in clinical trials. In this study, we evaluated CP production in USA300 methicillin-resistantS. aureus(MRSA) isolates that have become the predominant community-associated MRSA clones in the United States. We found that all 167 USA300 MRSA and 50 USA300 methicillin-susceptibleS. aureus(MSSA) isolates were CP negative (CP−). Moreover, all 16 USA500 isolates, which have been postulated to be the progenitor lineage of USA300, were also CP−. Whole-genome sequence analysis of 146 CP−USA300 MRSA isolates revealed they all carry acap5locus with 4 conserved mutations compared with strain Newman. Genetic complementation experiments revealed that three of these mutations (in thecap5promoter,cap5Dnucleotide 994, andcap5Enucleotide 223) ablated CP production in USA300 and that Cap5E75 Asp, located in the coenzyme-binding domain, is essential for capsule production. All but three USA300 MSSA isolates had the same fourcap5mutations found in USA300 MRSA isolates. Most isolates with a USA500 pulsotype carried three of these four USA300-specific mutations, suggesting the fourth mutation occurred in the USA300 lineage. Phylogenetic analysis of thecaploci of our USA300 isolates as well as publicly available genomes from 41 other sequence types revealed that the USA300-specificcap5mutations arose sequentially inS. aureusin a common ancestor of USA300 and USA500 isolates.IMPORTANCEThe USA300 MRSA clone emerged as a community-associated pathogen in the United States nearly 20 years ago. Since then, it has rapidly disseminated and now causes health care-associated infections. This study shows that the CP-negative (CP−) phenotype has persisted among USA300 isolates and is a universal and characteristic trait of this highly successful MRSA lineage. It is important to note that a vaccine consisting solely of CP antigens would not likely demonstrate high efficacy in the U.S. population, where about half of MRSA isolates comprise USA300. Moreover, conversion of a USA300 strain to a CP-positive (CP+) phenotype is unlikelyin vivoorin vitrosince it would require the reversion of 3 mutations. We have also established that USA300 MSSA isolates and USA500 isolates are CP−and provide new insight into the evolution of the USA300 and USA500 lineages.


2015 ◽  
Vol 23 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Eun Hwa Choi ◽  
Fan Zhang ◽  
Ying-Jie Lu ◽  
Richard Malley

ABSTRACTThe efficacy of the serotype 3 (ST3) pneumococcal conjugate vaccine (PCV) remains unclear. While the synthesis of capsular polysaccharide (CPS) of most serotypes iswzydependent, the strains of two serotypes, 3 and 37, synthesize CPS by the synthase-dependent pathway, resulting in a polysaccharide that is not covalently linked to peptidoglycan and can be released during growth. We hypothesized that the release of CPS during growth reduces anti-type 3 CPS antibody-mediated protection and may explain the lower efficacy of the type 3 component of PCV than that of other PCVs. Thein vitro-released CPS concentrations per 107CFU of ST3 and ST37 strains were significantly higher than those for the ST1, ST4, ST6B, and ST14 strains. Following intraperitoneal (i.p.) injection in mice, blood concentrations of CPS were significantly higher for the ST3 than for the ST4/5 strains. The opsonophagocytic killing assay (OPKA) titer of anti-type 3 CPS antibody was significantly reduced by type 3 CPS, culture supernatant, or serum fromStreptococcus pneumoniaeST3 strain WU2-infected mice. Mice were injected with capsule-specific antibodies and challenged i.p. with or without the addition of sterile culture supernatant containing type-specific CPS. The addition of 0.2 μl of culture supernatant from WU2 inhibited passive protection, whereas 100-fold-more culture supernatant fromS. pneumoniaeST4 strain TIGR4 was required for the inhibition of protection. We conclude that released type 3 CPS interferes with antibody-mediated killing and protection by anti-CPS antibodies. The relative failure of ST3 PCV may be due to CPS release, suggesting that alternative immunization approaches for ST3 may be necessary.


2015 ◽  
Vol 59 (8) ◽  
pp. 4457-4463 ◽  
Author(s):  
Benoit Lechartier ◽  
Stewart T. Cole

ABSTRACTClofazimine (CZM) is an antileprosy drug that was recently repurposed for treatment of multidrug-resistant tuberculosis. InMycobacterium tuberculosis, CZM appears to act as a prodrug, which is reduced by NADH dehydrogenase (NDH-2), to release reactive oxygen species upon reoxidation by O2. CZM presumably competes with menaquinone (MK-4), a key cofactor in the mycobacterial electron transfer chain, for its reduction by NDH-2. We studied the effect of MK-4 supplementation on the activity of CZM againstM. tuberculosisand found direct competition between CZM and MK-4 for the cidal effect of CZM, against nonreplicating and actively growing bacteria, as MK-4 supplementation blocked the drug's activity against nonreplicating bacteria. We demonstrated that CZM, like bedaquiline, is synergisticin vitrowith benzothiazinones such as 2-piperazino-benzothiazinone 169 (PBTZ169), and this synergy also occurs against nonreplicating bacteria. The synergy between CZM and PBTZ169 was lost in an MK-4-rich medium, indicating that MK-4 is the probable link between their activities. The efficacy of the dual combination of CZM and PBTZ169 was testedin vivo, where a great reduction in bacterial load was obtained in a murine model of chronic tuberculosis. Taken together, these data confirm the potential of CZM in association with PBTZ169 as the basis for a new regimen against drug-resistant strains ofM. tuberculosis.


2012 ◽  
Vol 56 (7) ◽  
pp. 3475-3480 ◽  
Author(s):  
Sovitj Pou ◽  
Rolf W. Winter ◽  
Aaron Nilsen ◽  
Jane Xu Kelly ◽  
Yuexin Li ◽  
...  

ABSTRACTSontochin was the original chloroquine replacement drug, arising from research by Hans Andersag 2 years after chloroquine (known as “resochin” at the time) had been shelved due to the mistaken perception that it was too toxic for human use. We were surprised to find that sontochin, i.e., 3-methyl-chloroquine, retains significant activity against chloroquine-resistant strains ofPlasmodium falciparum in vitro. We prepared derivatives of sontochin, “pharmachins,” with alkyl or aryl substituents at the 3 position and with alterations to the 4-position side chain to enhance activity against drug-resistant strains. Modified with an aryl substituent in the 3 position of the 7-chloro-quinoline ring, Pharmachin 203 (PH-203) exhibits low-nanomolar 50% inhibitory concentrations (IC50s) against drug-sensitive and multidrug-resistant strains andin vivoefficacy against patent infections ofPlasmodium yoeliiin mice that is superior to chloroquine. Our findings suggest that novel 3-position aryl pharmachin derivatives have the potential for use in treating drug resistant malaria.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kasturi Banerjee ◽  
Michael P. Motley ◽  
Elizabeth Diago-Navarro ◽  
Bettina C. Fries

ABSTRACT Capsular polysaccharide (CPS) heterogeneity within carbapenem-resistant Klebsiella pneumoniae (CR-Kp) strain sequence type 258 (ST258) must be considered when developing CPS-based vaccines. Here, we sought to characterize CPS-specific antibody responses elicited by CR-Kp-infected patients. Plasma and bacterial isolates were collected from 33 hospital patients with positive CR-Kp cultures. Isolate capsules were typed by wzi sequencing. Reactivity and measures of efficacy of patient antibodies were studied against 3 prevalent CR-Kp CPS types (wzi29, wzi154, and wzi50). High IgG titers against wzi154 and wzi50 CPS were documented in 79% of infected patients. Patient-derived (PD) IgGs agglutinated CR-Kp and limited growth better than naive IgG and promoted phagocytosis of strains across the serotype isolated from their donors. Additionally, poly-IgG from wzi50 and wzi154 patients promoted phagocytosis of nonconcordant CR-Kp serotypes. Such effects were lost when poly-IgG was depleted of CPS-specific IgG. Additionally, mice infected with wzi50, wzi154, and wzi29 CR-Kp strains preopsonized with wzi50 patient-derived IgG exhibited lower lung CFU than controls. Depletion of wzi50 antibodies (Abs) reversed this effect in wzi50 and wzi154 infections, whereas wzi154 Ab depletion reduced poly-IgG efficacy against wzi29 CR-Kp. We are the first to report cross-reactive properties of CPS-specific Abs from CR-Kp patients through both in vitro and in vivo models. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is a rapidly emerging public health threat that can cause fatal infections in up to 50% of affected patients. Due to its resistance to nearly all antimicrobials, development of alternate therapies like antibodies and vaccines is urgently needed. Capsular polysaccharides constitute important targets, as they are crucial for Klebsiella pneumoniae pathogenesis. Capsular polysaccharides are very diverse and, therefore, studying the host’s capsule-type specific antibodies is crucial to develop effective anti-CPS immunotherapies. In this study, we are the first to characterize humoral responses in infected patients against carbapenem-resistant Klebsiella pneumoniae expressing different wzi capsule types. This study is the first to report the efficacy of cross-reactive properties of CPS-specific Abs in both in vitro and in vivo models.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Jennifer Timm ◽  
Maria Valente ◽  
Daniel García-Caballero ◽  
Keith S. Wilson ◽  
Dolores González-Pacanowska

ABSTRACT Leucine aminopeptidases (LAPs) catalyze the hydrolysis of the N-terminal amino acid of peptides and are considered potential drug targets. They are involved in multiple functions ranging from host cell invasion and provision of essential amino acids to site-specific homologous recombination and transcription regulation. In kinetoplastid parasites, there are at least three distinct LAPs. The availability of the crystal structures provides important information for drug design. Here we report the structure of the acidic LAPs from three kinetoplastids in complex with different inhibitors and explore their role in Trypanosoma brucei survival under various nutrient conditions. Importantly, the acidic LAP is dispensable for growth both in vitro and in vivo, an observation that questions its use as a specific drug target. While LAP-A is not essential, leucine depletion and subcellular localization studies performed under starvation conditions suggest a possible function of LAP-A in the response to nutrient restriction. Leucine aminopeptidase (LAP) is found in all kingdoms of life and catalyzes the metal-dependent hydrolysis of the N-terminal amino acid residue of peptide or amino acyl substrates. LAPs have been shown to participate in the N-terminal processing of certain proteins in mammalian cells and in homologous recombination and transcription regulation in bacteria, while in parasites, they are involved in host cell invasion and provision of essential amino acids for growth. The enzyme is essential for survival in Plasmodium falciparum, where its drug target potential has been suggested. We report here the X-ray structures of three kinetoplastid acidic LAPs (LAP-As from Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major) which were solved in the metal-free and unliganded forms, as well as in a number of ligand complexes, providing insight into ligand binding, metal ion requirements, and oligomeric state. In addition, we analyzed mutant cells defective in LAP-A in Trypanosoma brucei, strongly suggesting that the enzyme is not required for the growth of this parasite either in vitro or in vivo. In procyclic cells, LAP-A was equally distributed throughout the cytoplasm, yet upon starvation, it relocalizes in particles that concentrate in the perinuclear region. Overexpression of the enzyme conferred a growth advantage when parasites were grown in leucine-deficient medium. Overall, the results suggest that in T. brucei, LAP-A may participate in protein degradation associated with nutrient depletion. IMPORTANCE Leucine aminopeptidases (LAPs) catalyze the hydrolysis of the N-terminal amino acid of peptides and are considered potential drug targets. They are involved in multiple functions ranging from host cell invasion and provision of essential amino acids to site-specific homologous recombination and transcription regulation. In kinetoplastid parasites, there are at least three distinct LAPs. The availability of the crystal structures provides important information for drug design. Here we report the structure of the acidic LAPs from three kinetoplastids in complex with different inhibitors and explore their role in Trypanosoma brucei survival under various nutrient conditions. Importantly, the acidic LAP is dispensable for growth both in vitro and in vivo, an observation that questions its use as a specific drug target. While LAP-A is not essential, leucine depletion and subcellular localization studies performed under starvation conditions suggest a possible function of LAP-A in the response to nutrient restriction.


2003 ◽  
Vol 71 (12) ◽  
pp. 7149-7153 ◽  
Author(s):  
E. Swiatlo ◽  
J. King ◽  
G. S. Nabors ◽  
B. Mathews ◽  
D. E. Briles

ABSTRACT Pneumococcal surface protein A (PspA) is an immunogenic protein expressed on the surface of all strains of Streptococcus pneumoniae (pneumococcus) and induces antibodies which protect against invasive infection in mice. Pneumococci used for infectious challenge in protection studies are typically collected from cultures grown in semisynthetic medium in vitro. The purpose of these studies is to confirm that PspA is expressed by pneumococci during growth in vivo at a level sufficient for antibodies to PspA to be protective. Mice were actively immunized with purified PspA or by passive transfer of monoclonal antibody (MAb) and challenged with a capsular type 3 strain in diluted whole blood from bacteremic mice. All were protected against challenge with 10 times the 50% lethal dose (LD50), and mice challenged with 1,000 times the LD50 had increased survival compared with controls. Additionally, nonimmune mice treated with MAbs to PspA or PspA immune serum at 6 and 12 h after infection with 10 times the LD50 also showed increased survival. Northern blot analysis of RNA from pneumococci grown either in vitro or in vivo showed similar levels of PspA mRNA. These results demonstrate that PspA is expressed in vivo in a mouse model and that immunization with PspA induces antibodies to an antigen which is expressed during the course of invasive infection. Immunotherapy with antibodies to PspA may have some utility in treating pneumococcal infections in humans.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Elizabeth K. Naglak ◽  
Sandra G. Morrison ◽  
Richard P. Morrison

ABSTRACT Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia-specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo, natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response.


Sign in / Sign up

Export Citation Format

Share Document