Faculty Opinions recommendation of Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

Author(s):  
Malini Raghavan ◽  
Anita Zaitouna ◽  
Amanpreet Kaur
Keyword(s):  
Mhc I ◽  
2018 ◽  
Author(s):  
F. Tudor Ilca ◽  
Andreas Neerincx ◽  
Clemens Hermann ◽  
Ana Marcu ◽  
Stefan Stevanovic ◽  
...  

AbstractTapasin and TAPBPR are known to perform peptide editing on major histocompatibility complex class I (MHC I) molecules, however, the precise molecular mechanism(s) involved in this process remain largely enigmatic. Here, using immunopeptidomics in combination with novel cell-based assays that assess TAPBPR-mediate peptide exchange, we reveal a critical role for the K22-D35 loop of TAPBPR in mediating peptide exchange on MHC I. We identify a specific leucine within this loop that enables TAPBPR to facilitate peptide dissociation from MHC I. Moreover, we delineate the molecular features of the MHC I F pocket required for TAPBPR to promote peptide dissociation in a loop-dependent manner. These data reveal that chaperone-mediated peptide editing of MHC I can occur by different mechanisms dependent on the C-terminal residue that the MHC I accommodates in its F pocket and provide novel insights that may inform the therapeutic potential of TAPBPR manipulation to increase tumour immunogenicity.Impact StatementThis work demonstrates for the first time that the K22-D35 loop of TAPBPR is the essential region for mediating peptide exchange and peptide selection on major histocompatibility complex class I molecules.


2019 ◽  
Author(s):  
Sarah A. Overall ◽  
Jugmohit S. Toor ◽  
Stephanie Hao ◽  
Mark Yarmarkovich ◽  
Son Nguyen ◽  
...  

ABSTRACTPeptide exchange technologies are essential for the generation of pMHC-multimer libraries, used to probe highly diverse, polyclonal TCR repertoires. Using the molecular chaperone TAPBPR, we present a robust method for the capture of stable, empty MHC-I molecules which can be readily tetramerized and loaded with peptides of choice in a high-throughput manner. Combined with tetramer barcoding using multi-modal cellular indexing technology (ECCITE-seq), our approach allows a combined analysis of TCR repertoires and other T-cell transcription profiles together with their cognate pMHC-I specificities in a single experiment.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
F Tudor Ilca ◽  
Andreas Neerincx ◽  
Clemens Hermann ◽  
Ana Marcu ◽  
Stefan Stevanović ◽  
...  

Tapasin and TAPBPR are known to perform peptide editing on major histocompatibility complex class I (MHC I) molecules; however, the precise molecular mechanism(s) involved in this process remain largely enigmatic. Here, using immunopeptidomics in combination with novel cell-based assays that assess TAPBPR-mediated peptide exchange, we reveal a critical role for the K22-D35 loop of TAPBPR in mediating peptide exchange on MHC I. We identify a specific leucine within this loop that enables TAPBPR to facilitate peptide dissociation from MHC I. Moreover, we delineate the molecular features of the MHC I F pocket required for TAPBPR to promote peptide dissociation in a loop-dependent manner. These data reveal that chaperone-mediated peptide editing on MHC I can occur by different mechanisms dependent on the C-terminal residue that the MHC I accommodates in its F pocket and provide novel insights that may inform the therapeutic potential of TAPBPR manipulation to increase tumour immunogenicity.


2018 ◽  
Vol 115 (40) ◽  
pp. E9353-E9361 ◽  
Author(s):  
F. Tudor Ilca ◽  
Andreas Neerincx ◽  
Mark R. Wills ◽  
Maike de la Roche ◽  
Louise H. Boyle

The repertoire of peptides displayed at the cell surface by MHC I molecules is shaped by two intracellular peptide editors, tapasin and TAPBPR. While cell-free assays have proven extremely useful in identifying the function of both of these proteins, here we explored whether a more physiological system could be developed to assess TAPBPR-mediated peptide editing on MHC I. We reveal that membrane-associated TAPBPR targeted to the plasma membrane retains its ability to function as a peptide editor and efficiently catalyzes peptide exchange on surface-expressed MHC I molecules. Additionally, we show that soluble TAPBPR, consisting of the luminal domain alone, added to intact cells, also functions as an effective peptide editor on surface MHC I molecules. Thus, we have established two systems in which TAPBPR-mediated peptide exchange on MHC class I can be interrogated. Furthermore, we could use both plasma membrane-targeted and exogenous soluble TAPBPR to display immunogenic peptides on surface MHC I molecules and consequently induce T cell receptor engagement, IFN-γ secretion, and T cell-mediated killing of target cells. Thus, we have developed an efficient way to by-pass the natural antigen presentation pathway of cells and load immunogenic peptides of choice onto cells. Our findings highlight a potential therapeutic use for TAPBPR in increasing the immunogenicity of tumors in the future.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Clemens Hermann ◽  
Andy van Hateren ◽  
Nico Trautwein ◽  
Andreas Neerincx ◽  
Patrick J Duriez ◽  
...  

Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system.


2019 ◽  
Vol 116 (11) ◽  
pp. 5055-5060 ◽  
Author(s):  
Ida Hafstrand ◽  
Ece Canan Sayitoglu ◽  
Anca Apavaloaei ◽  
Benjamin John Josey ◽  
Renhua Sun ◽  
...  

MHC-I epitope presentation to CD8+ T cells is directly dependent on peptide loading and selection during antigen processing. However, the exact molecular bases underlying peptide selection and binding by MHC-I remain largely unknown. Within the peptide-loading complex, the peptide editor tapasin is key to the selection of MHC-I–bound peptides. Here, we have determined an ensemble of crystal structures of MHC-I in complex with the peptide exchange-associated dipeptide GL, as well as the tapasin-associated scoop loop, alone or in combination with candidate epitopes. These results combined with mutation analyses allow us to propose a molecular model underlying MHC-I peptide selection by tapasin. The N termini of bound peptides most probably bind first in the N-terminal and middle region of the MHC-I peptide binding cleft, upon which the peptide C termini are tested for their capacity to dislodge the tapasin scoop loop from the F pocket of the MHC-I cleft. Our results also indicate important differences in peptide selection between different MHC-I alleles.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huan Lan ◽  
Esam T. Abualrous ◽  
Jana Sticht ◽  
Laura Maria Arroyo Fernandez ◽  
Tamina Werk ◽  
...  

AbstractThe repertoire of peptides presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface is tailored by the ER-resident peptide loading complex (PLC), which contains the exchange catalyst tapasin. Tapasin stabilizes MHC-I molecules and promotes the formation of stable peptide-MHC-I (pMHC-I) complexes that serve as T cell antigens. Exchange of suboptimal by high-affinity ligands is catalyzed by tapasin, but the underlying mechanism is still elusive. Here we analyze the tapasin-induced changes in MHC-I dynamics, and find the catalyst to exploit two essential features of MHC-I. First, tapasin recognizes a conserved allosteric site underneath the α2-1-helix of MHC-I, ‘loosening’ the MHC-I F-pocket region that accomodates the C-terminus of the peptide. Second, the scoop loop11–20 of tapasin relies on residue L18 to target the MHC-I F-pocket, enabling peptide exchange. Meanwhile, tapasin residue K16 plays an accessory role in catalysis of MHC-I allotypes bearing an acidic F-pocket. Thus, our results provide an explanation for the observed allele-specificity of catalyzed peptide exchange.


2018 ◽  
Vol 14 (8) ◽  
pp. 811-820 ◽  
Author(s):  
Andrew C. McShan ◽  
Kannan Natarajan ◽  
Vlad K. Kumirov ◽  
David Flores-Solis ◽  
Jiansheng Jiang ◽  
...  
Keyword(s):  
Mhc I ◽  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lina Sagert ◽  
Felix Hennig ◽  
Christoph Thomas ◽  
Robert Tampé

Adaptive immunity vitally depends on major histocompatibility complex class I (MHC I) molecules loaded with peptides. Selective loading of peptides onto MHC I, referred to as peptide editing, is catalyzed by tapasin and the tapasin-related TAPBPR. An important catalytic role has been ascribed to a structural feature in TAPBPR called the scoop loop, but the exact function of the scoop loop remains elusive. Here, using a reconstituted system of defined peptide-exchange components including human TAPBPR variants, we uncover a substantial contribution of the scoop loop to the stability of the MHC I-chaperone complex and to peptide editing. We reveal that the scoop loop of TAPBPR functions as an internal peptide surrogate in peptide-depleted environments stabilizing empty MHC I and impeding peptide rebinding. The scoop loop thereby acts as an additional selectivity filter in shaping the repertoire of presented peptide epitopes and the formation of a hierarchical immune response.


Sign in / Sign up

Export Citation Format

Share Document