scholarly journals A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lina Sagert ◽  
Felix Hennig ◽  
Christoph Thomas ◽  
Robert Tampé

Adaptive immunity vitally depends on major histocompatibility complex class I (MHC I) molecules loaded with peptides. Selective loading of peptides onto MHC I, referred to as peptide editing, is catalyzed by tapasin and the tapasin-related TAPBPR. An important catalytic role has been ascribed to a structural feature in TAPBPR called the scoop loop, but the exact function of the scoop loop remains elusive. Here, using a reconstituted system of defined peptide-exchange components including human TAPBPR variants, we uncover a substantial contribution of the scoop loop to the stability of the MHC I-chaperone complex and to peptide editing. We reveal that the scoop loop of TAPBPR functions as an internal peptide surrogate in peptide-depleted environments stabilizing empty MHC I and impeding peptide rebinding. The scoop loop thereby acts as an additional selectivity filter in shaping the repertoire of presented peptide epitopes and the formation of a hierarchical immune response.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
F Tudor Ilca ◽  
Andreas Neerincx ◽  
Clemens Hermann ◽  
Ana Marcu ◽  
Stefan Stevanović ◽  
...  

Tapasin and TAPBPR are known to perform peptide editing on major histocompatibility complex class I (MHC I) molecules; however, the precise molecular mechanism(s) involved in this process remain largely enigmatic. Here, using immunopeptidomics in combination with novel cell-based assays that assess TAPBPR-mediated peptide exchange, we reveal a critical role for the K22-D35 loop of TAPBPR in mediating peptide exchange on MHC I. We identify a specific leucine within this loop that enables TAPBPR to facilitate peptide dissociation from MHC I. Moreover, we delineate the molecular features of the MHC I F pocket required for TAPBPR to promote peptide dissociation in a loop-dependent manner. These data reveal that chaperone-mediated peptide editing on MHC I can occur by different mechanisms dependent on the C-terminal residue that the MHC I accommodates in its F pocket and provide novel insights that may inform the therapeutic potential of TAPBPR manipulation to increase tumour immunogenicity.


Author(s):  
Thomas Osterbye ◽  
Morten Nielsen ◽  
Nadine L. Dudek ◽  
Sri H. Ramarathinam ◽  
Anthony W. Purcell ◽  
...  

AbstractThe ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery; something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I (MHC-I) prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC-I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Since MHC-II restricted CD4+ T cells control and orchestrate most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data is key to the solution of this problem; a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse and representative data. Here, we have used recombinant HLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated. Collectively, with a cost per peptide reduced to a few cents combined with the flexibility of recombinant HLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huan Lan ◽  
Esam T. Abualrous ◽  
Jana Sticht ◽  
Laura Maria Arroyo Fernandez ◽  
Tamina Werk ◽  
...  

AbstractThe repertoire of peptides presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface is tailored by the ER-resident peptide loading complex (PLC), which contains the exchange catalyst tapasin. Tapasin stabilizes MHC-I molecules and promotes the formation of stable peptide-MHC-I (pMHC-I) complexes that serve as T cell antigens. Exchange of suboptimal by high-affinity ligands is catalyzed by tapasin, but the underlying mechanism is still elusive. Here we analyze the tapasin-induced changes in MHC-I dynamics, and find the catalyst to exploit two essential features of MHC-I. First, tapasin recognizes a conserved allosteric site underneath the α2-1-helix of MHC-I, ‘loosening’ the MHC-I F-pocket region that accomodates the C-terminus of the peptide. Second, the scoop loop11–20 of tapasin relies on residue L18 to target the MHC-I F-pocket, enabling peptide exchange. Meanwhile, tapasin residue K16 plays an accessory role in catalysis of MHC-I allotypes bearing an acidic F-pocket. Thus, our results provide an explanation for the observed allele-specificity of catalyzed peptide exchange.


2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 298
Author(s):  
Arnika K. Wagner ◽  
Ulf Gehrmann ◽  
Stefanie Hiltbrunner ◽  
Valentina Carannante ◽  
Thuy T. Luu ◽  
...  

Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.


2009 ◽  
Vol 90 (12) ◽  
pp. 2865-2870 ◽  
Author(s):  
Barbara Marchetti ◽  
Elisabeth A. Gault ◽  
Marc S. Cortese ◽  
ZhengQiang Yuan ◽  
Shirley A. Ellis ◽  
...  

Bovine papillomavirus type 1 is one of the aetiological agents of equine sarcoids. The viral major oncoprotein E5 is expressed in virtually all sarcoids, sarcoid cell lines and in vitro-transformed equine fibroblasts. To ascertain whether E5 behaves in equine cells as it does in bovine cells, we introduced the E5 open reading frame into fetal equine fibroblasts (EqPalF). As observed in primary bovine fibroblasts (BoPalF), E5 by itself could not immortalize EqPalF and an immortalizing gene, such as human telomerase (hTERT/hT), was required for the cells to survive selection. The EqPalF-hT-1E5 cells were morphologically transformed, elongated with many pseudopodia and capable of forming foci. Equine major histocompatibility complex class I (MHC I) was inhibited in these cells at least at two levels: transcription of MHC I heavy chain was inhibited and the MHC I complex was retained in the Golgi apparatus and prevented from reaching the cell surface. We conclude that, as in bovine cells and tumours, E5 is a player in the transformation of equine cells and the induction of sarcoids, and a potential major cause of MHC I downregulation and hence poor immune clearance of tumour cells.


2012 ◽  
Vol 209 (12) ◽  
pp. 2263-2276 ◽  
Author(s):  
Tom M. McCaughtry ◽  
Ruth Etzensperger ◽  
Amala Alag ◽  
Xuguang Tai ◽  
Sema Kurtulus ◽  
...  

The thymus generates T cells with diverse specificities and functions. To assess the contribution of cytokine receptors to the differentiation of T cell subsets in the thymus, we constructed conditional knockout mice in which IL-7Rα or common cytokine receptor γ chain (γc) genes were deleted in thymocytes just before positive selection. We found that γc expression was required to signal the differentiation of MHC class I (MHC-I)–specific thymocytes into CD8+ cytotoxic lineage T cells and into invariant natural killer T cells but did not signal the differentiation of MHC class II (MHC-II)–specific thymocytes into CD4+ T cells, even into regulatory Foxp3+CD4+ T cells which require γc signals for survival. Importantly, IL-7 and IL-15 were identified as the cytokines responsible for CD8+ cytotoxic T cell lineage specification in vivo. Additionally, we found that small numbers of aberrant CD8+ T cells expressing Runx3d could arise without γc signaling, but these cells were developmentally arrested before expressing cytotoxic lineage genes. Thus, γc-transduced cytokine signals are required for cytotoxic lineage specification in the thymus and for inducing the differentiation of MHC-I–selected thymocytes into functionally mature T cells.


2019 ◽  
Vol 116 (52) ◽  
pp. 26709-26716 ◽  
Author(s):  
Petros Giastas ◽  
Anastasia Mpakali ◽  
Athanasios Papakyriakou ◽  
Aggelos Lelis ◽  
Paraskevi Kokkala ◽  
...  

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that optimizes the peptide cargo of major histocompatibility class I (MHC-I) molecules and regulates adaptive immunity. It has unusual substrate selectivity for length and sequence, resulting in poorly understood effects on the cellular immunopeptidome. To understand substrate selection by ERAP1, we solved 2 crystal structures of the enzyme with bound transition-state pseudopeptide analogs at 1.68 Å and 1.72 Å. Both peptides have their N terminus bound at the active site and extend away along a large internal cavity, interacting with shallow pockets that can influence selectivity. The longer peptide is disordered through the central region of the cavity and has its C terminus bound in an allosteric pocket of domain IV that features a carboxypeptidase-like structural motif. These structures, along with enzymatic and computational analyses, explain how ERAP1 can select peptides based on length while retaining the broad sequence-specificity necessary for its biological function.


2021 ◽  
Author(s):  
Tyler Jacks ◽  
Alex Jaeger ◽  
Lauren Stopfer ◽  
Emma Sanders ◽  
Demi Sandel ◽  
...  

Abstract Effective immunosurveillance of cancer requires the presentation of peptide antigens on major histocompatibility complex Class I (MHC-I). Recent developments in proteomics have improved the identification of peptides that are naturally presented by MHC-I, collectively known as the “immunopeptidome”. Current approaches to profile tumor immunopeptidomes have been limited to in vitro investigation, which fails to capture the in vivo repertoire of MHC-I peptides, or bulk tumor lysates, which are obscured by the lack of tumor-specific MHC-I isolation. To overcome these limitations, we report here the engineering of a Cre recombinase-inducible affinity tag into the endogenous mouse MHC-I gene and targeting of this allele to the KrasLSL-G12D/+; p53fl/fl (KP) mouse model (KP; KbStrep). This novel approach has allowed us to isolate tumor-specific MHC-I peptides from autochthonous pancreatic ductal adenocarcinoma (PDAC) and lung adenocarcinoma (LUAD) in vivo. With this powerful analytical tool, we were able to profile the evolution of the LUAD immunopeptidome through tumor progression and show that in vivo MHC-I presentation is shaped by post-translational mechanisms. We also uncovered novel, putative LUAD tumor associated antigens (TAAs). Many peptides that were recurrently presented in vivo exhibited very low expression of the cognate mRNA, provoking reconsideration of antigen prediction pipelines that triage peptides according to transcript abundance. Beyond cancer, the KbStrep allele is compatible with a broad range of Cre-driver lines to explore antigen presentation in vivo in the pursuit of understanding basic immunology, infectious disease, and autoimmunity.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1177
Author(s):  
Anita J. Zaitouna ◽  
Amanpreet Kaur ◽  
Malini Raghavan

Major histocompatibility class I (MHC-I) proteins mediate immunosurveillance against pathogens and cancers by presenting antigenic or mutated peptides to antigen receptors of CD8+ T cells and by engaging receptors of natural killer (NK) cells. In humans, MHC-I molecules are highly polymorphic. MHC-I variations permit the display of thousands of distinct peptides at the cell surface. Recent mass spectrometric studies have revealed unique and shared characteristics of the peptidomes of individual MHC-I variants. The cell surface expression of MHC-I–peptide complexes requires the functions of many intracellular assembly factors, including the transporter associated with antigen presentation (TAP), tapasin, calreticulin, ERp57, TAP-binding protein related (TAPBPR), endoplasmic reticulum aminopeptidases (ERAPs), and the proteasomes. Recent studies provide important insights into the structural features of these factors that govern MHC-I assembly as well as the mechanisms underlying peptide exchange. Conformational sensing of MHC-I molecules mediates the quality control of intracellular MHC-I assembly and contributes to immune recognition by CD8 at the cell surface. Recent studies also show that several MHC-I variants can follow unconventional assembly routes to the cell surface, conferring selective immune advantages that can be exploited for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document