scholarly journals Faculty Opinions recommendation of Aerosol exposure to intermediate size Nipah virus particles induces neurological disease in African green monkeys.

Author(s):  
Branka Horvat
2018 ◽  
Vol 12 (11) ◽  
pp. e0006978 ◽  
Author(s):  
Dima A. Hammoud ◽  
Margaret R. Lentz ◽  
Abigail Lara ◽  
Jordan K. Bohannon ◽  
Irwin Feuerstein ◽  
...  

2019 ◽  
Vol 221 (Supplement_4) ◽  
pp. S431-S435 ◽  
Author(s):  
Abhishek N Prasad ◽  
Krystle N Agans ◽  
Satheesh K Sivasubramani ◽  
Joan B Geisbert ◽  
Viktoriya Borisevich ◽  
...  

Abstract The high case-fatality rates and potential for use as a biological weapon make Nipah virus (NiV) a significant public health concern. Previous studies assessing the pathogenic potential of NiV delivered by the aerosol route in African green monkeys (AGMs) used the Malaysia strain (NiVM), which has caused lower instances of respiratory illness and person-to-person transmission during human outbreaks than the Bangladesh strain (NiVB). Accordingly, we developed a small particle aerosol model of NiVB infection in AGMs. Consistent with other mucosal AGM models of NiVB infection, we achieved uniform lethality and disease pathogenesis reflective of that observed in humans.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Viktoriya Borisevich ◽  
Mehmet Hakan Ozdener ◽  
Bilal Malik ◽  
Barry Rockx

ABSTRACT Henipaviruses are emerging zoonotic pathogens that can cause acute and severe respiratory and neurological disease in humans. The pathways by which henipaviruses enter the central nervous system (CNS) in humans are still unknown. The observation that human olfactory neurons are highly susceptible to infection with henipaviruses demonstrates that the olfactory epithelium can serve as a site of Henipavirus entry into the CNS. Henipaviruses are emerging zoonotic viruses and causative agents of encephalitis in humans. However, the mechanisms of entry into the central nervous system (CNS) in humans are not known. Here, we evaluated the possible role of olfactory epithelium in virus entry into the CNS. We characterized Hendra virus (HeV) and Nipah virus (NiV) infection of primary human olfactory epithelial cultures. We show that henipaviruses can infect mature olfactory sensory neurons. Henipaviruses replicated efficiently, resulting in cytopathic effect and limited induction of host responses. These results show that human olfactory epithelium is susceptible to infection with henipaviruses, suggesting that this could be a pathway for neuroinvasion in humans. IMPORTANCE Henipaviruses are emerging zoonotic pathogens that can cause acute and severe respiratory and neurological disease in humans. The pathways by which henipaviruses enter the central nervous system (CNS) in humans are still unknown. The observation that human olfactory neurons are highly susceptible to infection with henipaviruses demonstrates that the olfactory epithelium can serve as a site of Henipavirus entry into the CNS.


2019 ◽  
Vol 11 (494) ◽  
pp. eaau9242 ◽  
Author(s):  
Michael K. Lo ◽  
Friederike Feldmann ◽  
Joy M. Gary ◽  
Robert Jordan ◽  
Roy Bannister ◽  
...  

Nipah virus is an emerging pathogen in the Paramyxoviridae family. Upon transmission of Nipah virus from its natural reservoir, Pteropus spp. fruit bats, to humans, it causes respiratory and neurological disease with a case-fatality rate about 70%. Human-to-human transmission has been observed during Nipah virus outbreaks in Bangladesh and India. A therapeutic treatment for Nipah virus disease is urgently needed. Here, we tested the efficacy of remdesivir (GS-5734), a broad-acting antiviral nucleotide prodrug, against Nipah virus Bangladesh genotype in African green monkeys. Animals were inoculated with a lethal dose of Nipah virus, and a once-daily intravenous remdesivir treatment was initiated 24 hours later and continued for 12 days. Mild respiratory signs were observed in two of four treated animals, whereas all control animals developed severe respiratory disease signs. In contrast to control animals, which all succumbed to the infection, all remsdesivir-treated animals survived the lethal challenge, indicating that remdesivir represents a promising antiviral treatment for Nipah virus infection.


2019 ◽  
Vol 221 (Supplement_4) ◽  
pp. S454-S459
Author(s):  
Sarah C Genzer ◽  
Stephen R Welch ◽  
Florine E M Scholte ◽  
Jessica R Harmon ◽  
JoAnn D Coleman-McCray ◽  
...  

Abstract Nipah virus (NiV; family Paramyxoviridae, genus Henipavirus) infection can cause severe respiratory and neurological disease in humans. The pathophysiology of disease is not fully understood, and it may vary by presentation and clinical course. In this study, we investigate changes in blood chemistry in NiV-infected Syrian hamsters that survived or succumbed to disease. Increased sodium and magnesium and decreased albumin and lactate levels were detected in animals euthanized with severe clinical disease compared with mock-infected controls. When subjects were grouped by clinical syndrome, additional trends were discernable, highlighting changes associated with either respiratory or neurological disease.


2019 ◽  
Vol 221 (Supplement_4) ◽  
pp. S414-S418 ◽  
Author(s):  
Joan B Geisbert ◽  
Viktoriya Borisevich ◽  
Abhishek N Prasad ◽  
Krystle N Agans ◽  
Stephanie L Foster ◽  
...  

Abstract Due to the difficulty in conducting clinical trials for vaccines and treatments against Nipah virus (NiV), licensure will likely require animal models, most importantly non-human primates (NHPs). The NHP models of infection have primarily relied on intratracheal instillation or small particle aerosolization of NiV. However, neither of these routes adequately models natural mucosal exposure to NiV. To develop a more natural NHP model, we challenged African green monkeys with the Bangladesh strain of NiV by the intranasal route using the laryngeal mask airway (LMA) mucosal atomization device (MAD). LMA MAD exposure resulted in uniformly lethal disease that accurately reflected the human condition.


2016 ◽  
Vol 90 (14) ◽  
pp. 6326-6343 ◽  
Author(s):  
Benjamin A. Satterfield ◽  
Robert W. Cross ◽  
Karla A. Fenton ◽  
Viktoriya Borisevich ◽  
Krystle N. Agans ◽  
...  

ABSTRACTNipah virus (NiV) is a highly lethal paramyxovirus that recently emerged as a causative agent of febrile encephalitis and severe respiratory disease in humans. The ferret model has emerged as the preferred small-animal model with which to study NiV disease, but much is still unknown about the viral determinants of NiV pathogenesis, including the contribution of the C protein in ferrets. Additionally, studies have yet to examine the synergistic effects of the various P gene products on pathogenesis in animal models. Using recombinant NiVs (rNiVs), we examine the sole contribution of the NiV C protein and the combined contributions of the C and W proteins in the ferret model of NiV pathogenesis. We show that an rNiV void of C expression resulted in 100% mortality, though with limited respiratory disease, like our previously reported rNiV void of W expression; this finding is in stark contrast to the attenuated phenotype observed in previous hamster studies utilizing rNiVs void of C expression. We also observed that an rNiV void of both C and W expression resulted in limited respiratory disease; however, there was severe neurological disease leading to 60% mortality, and the surviving ferrets demonstrated sequelae similar to those for human survivors of NiV encephalitis.IMPORTANCENipah virus (NiV) is a human pathogen capable of causing lethal respiratory and neurological disease. Many human survivors have long-lasting neurological impairment. Using a ferret model, this study demonstrated the roles of the NiV C and W proteins in pathogenesis, where lack of either the C or the W protein independently decreased the severity of clinical respiratory disease but did not decrease lethality. Abolishing both C and W expression, however, dramatically decreased the severity of respiratory disease and the level of destruction of splenic germinal centers. These ferrets still suffered severe neurological disease: 60% succumbed to disease, and the survivors experienced long-term neurological impairment, such as that seen in human survivors. This new ferret NiV C and W knockout model may allow, for the first time, the examination of interventions to prevent or mitigate the neurological damage and sequelae experienced by human survivors.


2011 ◽  
Vol 85 (12) ◽  
pp. 5940-5948 ◽  
Author(s):  
J. B. Johnson ◽  
H. C. Aguilar ◽  
B. Lee ◽  
G. D. Parks

2012 ◽  
Vol 4 (146) ◽  
pp. 146ra107-146ra107 ◽  
Author(s):  
K. N. Bossart ◽  
B. Rockx ◽  
F. Feldmann ◽  
D. Brining ◽  
D. Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document