scholarly journals An Intranasal Exposure Model of Lethal Nipah Virus Infection in African Green Monkeys

2019 ◽  
Vol 221 (Supplement_4) ◽  
pp. S414-S418 ◽  
Author(s):  
Joan B Geisbert ◽  
Viktoriya Borisevich ◽  
Abhishek N Prasad ◽  
Krystle N Agans ◽  
Stephanie L Foster ◽  
...  

Abstract Due to the difficulty in conducting clinical trials for vaccines and treatments against Nipah virus (NiV), licensure will likely require animal models, most importantly non-human primates (NHPs). The NHP models of infection have primarily relied on intratracheal instillation or small particle aerosolization of NiV. However, neither of these routes adequately models natural mucosal exposure to NiV. To develop a more natural NHP model, we challenged African green monkeys with the Bangladesh strain of NiV by the intranasal route using the laryngeal mask airway (LMA) mucosal atomization device (MAD). LMA MAD exposure resulted in uniformly lethal disease that accurately reflected the human condition.

2019 ◽  
Vol 221 (Supplement_4) ◽  
pp. S431-S435 ◽  
Author(s):  
Abhishek N Prasad ◽  
Krystle N Agans ◽  
Satheesh K Sivasubramani ◽  
Joan B Geisbert ◽  
Viktoriya Borisevich ◽  
...  

Abstract The high case-fatality rates and potential for use as a biological weapon make Nipah virus (NiV) a significant public health concern. Previous studies assessing the pathogenic potential of NiV delivered by the aerosol route in African green monkeys (AGMs) used the Malaysia strain (NiVM), which has caused lower instances of respiratory illness and person-to-person transmission during human outbreaks than the Bangladesh strain (NiVB). Accordingly, we developed a small particle aerosol model of NiVB infection in AGMs. Consistent with other mucosal AGM models of NiVB infection, we achieved uniform lethality and disease pathogenesis reflective of that observed in humans.


Author(s):  
Nopmanee Taechangam ◽  
Amir Kol ◽  
Boaz Arzi ◽  
Dori L. Borjesson

AbstractMultipotent stromal cells (MSCs) are widely utilized in therapy for their immunomodulatory properties, but their usage in infectious viral diseases is less explored. This review aimed to collate the current novel use of MSCs in virus-associated conditions, including MSC’s susceptibility to virus infection, antiviral properties of MSCs and their effects on cell-based immune response and implementation of MSC therapy in animal models and human clinical trials of viral diseases. Recent discoveries shed lights on MSC’s capability in suppressing viral replication and augmenting clearance through enhancement of antiviral immunity. MSC therapy may maintain a crucial balance between aiding pathogen clearance and suppressing hyperactive immune response. Graphical Abstract


2020 ◽  
Vol 20 (28) ◽  
pp. 2634-2647
Author(s):  
Dong-Dong Li ◽  
Pan Yu ◽  
Wei Xiao ◽  
Zhen-Zhong Wang ◽  
Lin-Guo Zhao

: Berberine, as a representative isoquinoline alkaloid, exhibits significant hypolipidemic activity in both animal models and clinical trials. Recently, a large number of studies on the lipid-lowering mechanism of berberine and studies for improving its hypolipidemic activity have been reported, but for the most part, they have been either incomplete or not comprehensive. In addition, there have been a few specific reviews on the lipid-reducing effect of berberine. In this paper, the physicochemical properties, the lipid-lowering mechanism, and studies of the modification of berberine all are discussed to promote the development of berberine as a lipid-lowering agent. Subsequently, this paper provides some insights into the deficiencies of berberine in the study of lipid-lowering drug, and based on the situation, some proposals are put forward.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1197
Author(s):  
Klaus Ley

This 11-chapter Special Issue of Cells spans the gamut from basic science in mechanistic animal models to translational science to outcomes of clinical trials, all focused on the role of inflammation in atherosclerosis [...]


2021 ◽  
pp. 197140092110268
Author(s):  
Seyedeh Niloufar Rafiei Alavi ◽  
Arian Madani Neishaboori ◽  
Mahmoud Yousefifard

Background As there is no consensus over the efficacy of extracorporeal shockwave therapy in the management of spinal cord injury complications, the current meta-analysis aims to investigate preclinical evidence on the matter. Methods The search strategy was developed based on keywords related to ‘spinal cord injury’ and ‘extracorporeal shockwave therapy’. A primary search was conducted in Medline, Embase, Scopus and Web of Science until the end of 2020. Studies which administered extracorporeal shockwave therapy on spinal cord injury animal models and evaluated motor function and/or histological findings were included. The standardised mean difference with a 95% confidence interval (CI) were calculated. Results Seven articles were included. Locomotion was significantly improved in the extracorporeal shockwave therapy treated group (standardised mean difference 1.68, 95% CI 1.05–2.31, P=0.032). It seems that the efficacy of extracorporeal shockwave therapy with an energy flux density of 0.1 mJ/mm2 is higher than 0.04 mJ/mm2 ( P=0.044). Shockwave therapy was found to increase axonal sprouting (standardised mean difference 1.31, 95% CI 0.65, 1.96), vascular endothelial growth factor tissue levels (standardised mean difference 1.36, 95% CI 0.54, 2.18) and cell survival (standardised mean difference 2.49, 95% CI 0.93, 4.04). It also significantly prevents axonal degeneration (standardised mean difference 2.25, 95% CI 1.47, 3.02). Conclusion Extracorporeal shockwave therapy significantly improves locomotor recovery in spinal cord injury animal models through neural tissue regeneration. Nonetheless, in spite of the promising results and clinical application of extracorporeal shockwave therapy in various conditions, current evidence implies that designing clinical trials on extracorporeal shockwave therapy in the management of spinal cord injury may not be soon. Hence, further preclinical studies with the effort to reach the safest and the most efficient treatment protocol are needed.


2013 ◽  
Vol 26 (5) ◽  
pp. 264-271 ◽  
Author(s):  
Mousumi Tania ◽  
Md. Asaduzzaman Khan ◽  
Kun Xia

ObjectiveAutism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism.MethodsWe have reviewed the publications over the last three decades, which are related to animal model study in autism.ResultsAnimal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism.ConclusionIn this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.


2008 ◽  
Vol 45 (4) ◽  
pp. 576-585 ◽  
Author(s):  
F. J. Torres-Velez ◽  
W.-J. Shieh ◽  
P. E. Rollin ◽  
T. Morken ◽  
C. Brown ◽  
...  

2009 ◽  
Vol 26 (5) ◽  
pp. E24 ◽  
Author(s):  
Raymond Choi ◽  
Robert H. Andres ◽  
Gary K. Steinberg ◽  
Raphael Guzman

Increasing evidence in animal models and clinical trials for stroke, hypoxic encephalopathy for children, and traumatic brain injury have shown that mild hypothermia may attenuate ischemic damage and improve neurological outcome. However, it is less clear if mild intraoperative hypothermia during vascular neurosurgical procedures results in improved outcomes for patients. This review examines the scientific evidence behind hypothermia as a treatment and discusses factors that may be important for the use of this adjuvant technique, including cooling temperature, duration of hypothermia, and rate of rewarming.


1994 ◽  
Vol 23 (3-4) ◽  
pp. 219-224 ◽  
Author(s):  
K.F. Soike ◽  
J.-L. Huang ◽  
J.W. Russell ◽  
V.J. Whiterock ◽  
J.E. Sundeen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document