Faculty Opinions recommendation of High-performance medicine: the convergence of human and artificial intelligence.

Author(s):  
Craig Webster
2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Author(s):  
Yuchen Luo ◽  
Yi Zhang ◽  
Ming Liu ◽  
Yihong Lai ◽  
Panpan Liu ◽  
...  

Abstract Background and aims Improving the rate of polyp detection is an important measure to prevent colorectal cancer (CRC). Real-time automatic polyp detection systems, through deep learning methods, can learn and perform specific endoscopic tasks previously performed by endoscopists. The purpose of this study was to explore whether a high-performance, real-time automatic polyp detection system could improve the polyp detection rate (PDR) in the actual clinical environment. Methods The selected patients underwent same-day, back-to-back colonoscopies in a random order, with either traditional colonoscopy or artificial intelligence (AI)-assisted colonoscopy performed first by different experienced endoscopists (> 3000 colonoscopies). The primary outcome was the PDR. It was registered with clinicaltrials.gov. (NCT047126265). Results In this study, we randomized 150 patients. The AI system significantly increased the PDR (34.0% vs 38.7%, p < 0.001). In addition, AI-assisted colonoscopy increased the detection of polyps smaller than 6 mm (69 vs 91, p < 0.001), but no difference was found with regard to larger lesions. Conclusions A real-time automatic polyp detection system can increase the PDR, primarily for diminutive polyps. However, a larger sample size is still needed in the follow-up study to further verify this conclusion. Trial Registration clinicaltrials.gov Identifier: NCT047126265


Author(s):  
Indar Sugiarto ◽  
Doddy Prayogo ◽  
Henry Palit ◽  
Felix Pasila ◽  
Resmana Lim ◽  
...  

This paper describes a prototype of a computing platform dedicated to artificial intelligence explorations. The platform, dubbed as PakCarik, is essentially a high throughput computing platform with GPU (graphics processing units) acceleration. PakCarik is an Indonesian acronym for Platform Komputasi Cerdas Ramah Industri Kreatif, which can be translated as “Creative Industry friendly Intelligence Computing Platform”. This platform aims to provide complete development and production environment for AI-based projects, especially to those that rely on machine learning and multiobjective optimization paradigms. The method for constructing PakCarik was based on a computer hardware assembling technique that uses commercial off-the-shelf hardware and was tested on several AI-related application scenarios. The testing methods in this experiment include: high-performance lapack (HPL) benchmarking, message passing interface (MPI) benchmarking, and TensorFlow (TF) benchmarking. From the experiment, the authors can observe that PakCarik's performance is quite similar to the commonly used cloud computing services such as Google Compute Engine and Amazon EC2, even though falls a bit behind the dedicated AI platform such as Nvidia DGX-1 used in the benchmarking experiment. Its maximum computing performance was measured at 326 Gflops. The authors conclude that PakCarik is ready to be deployed in real-world applications and it can be made even more powerful by adding more GPU cards in it.


2021 ◽  
Vol 94 (1117) ◽  
pp. 20200975
Author(s):  
Natasha Davendralingam ◽  
Neil J Sebire ◽  
Owen J Arthurs ◽  
Susan C Shelmerdine

Artificial intelligence (AI) has received widespread and growing interest in healthcare, as a method to save time, cost and improve efficiencies. The high-performance statistics and diagnostic accuracies reported by using AI algorithms (with respect to predefined reference standards), particularly from image pattern recognition studies, have resulted in extensive applications proposed for clinical radiology, especially for enhanced image interpretation. Whilst certain sub-speciality areas in radiology, such as those relating to cancer screening, have received wide-spread attention in the media and scientific community, children’s imaging has been hitherto neglected. In this article, we discuss a variety of possible ‘use cases’ in paediatric radiology from a patient pathway perspective where AI has either been implemented or shown early-stage feasibility, while also taking inspiration from the adult literature to propose potential areas for future development. We aim to demonstrate how a ‘future, enhanced paediatric radiology service’ could operate and to stimulate further discussion with avenues for research.


Science ◽  
1994 ◽  
Vol 265 (5174) ◽  
pp. 891-892 ◽  
Author(s):  
J. Hendler

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mateusz Szczepański ◽  
Marek Pawlicki ◽  
Rafał Kozik ◽  
Michał Choraś

AbstractThe ubiquity of social media and their deep integration in the contemporary society has granted new ways to interact, exchange information, form groups, or earn money—all on a scale never seen before. Those possibilities paired with the widespread popularity contribute to the level of impact that social media display. Unfortunately, the benefits brought by them come at a cost. Social Media can be employed by various entities to spread disinformation—so called ‘Fake News’, either to make a profit or influence the behaviour of the society. To reduce the impact and spread of Fake News, a diverse array of countermeasures were devised. These include linguistic-based approaches, which often utilise Natural Language Processing (NLP) and Deep Learning (DL). However, as the latest advancements in the Artificial Intelligence (AI) domain show, the model’s high performance is no longer enough. The explainability of the system’s decision is equally crucial in real-life scenarios. Therefore, the objective of this paper is to present a novel explainability approach in BERT-based fake news detectors. This approach does not require extensive changes to the system and can be attached as an extension for operating detectors. For this purposes, two Explainable Artificial Intelligence (xAI) techniques, Local Interpretable Model-Agnostic Explanations (LIME) and Anchors, will be used and evaluated on fake news data, i.e., short pieces of text forming tweets or headlines. This focus of this paper is on the explainability approach for fake news detectors, as the detectors themselves were part of previous works of the authors.


Sign in / Sign up

Export Citation Format

Share Document