Faculty Opinions recommendation of Shiga toxin-induced haemolytic uraemic syndrome and the role of antibiotics: a global overview.

Author(s):  
Neil Sheerin
2000 ◽  
Vol 124 (2) ◽  
pp. 215-220 ◽  
Author(s):  
B. DECLUDT ◽  
P. BOUVET ◽  
P. MARIANI-KURKDJIAN ◽  
F. GRIMONT ◽  
P. A. D. GRIMONT ◽  
...  

We conducted a study to determine the incidence of haemolytic uraemic syndrome (HUS) in children in France and to assess the role of Shiga-toxin-producing Escherichia coli (STEC) infection in the aetiology of HUS. In collaboration with the Société de Néphrologie Pédiatrique we undertook a retrospective review of all cases of HUS hospitalized from January 1993 to March 1995 and a 1-year prospective study (April 1995–March 1996) of epidemiological and microbiological features of cases of HUS. The polymerase chain reaction (PCR) procedure was used to detect stx, eae, e-hlyA genes directly from case stool samples. Serum samples from cases were examined for antibodies to lipopolysaccharide (LPS) of 26 major STEC serogroups. Two hundred and eighty-six cases were reported. The average incidence per year was 0·7/105 children < 15 years and 1·8/105 children < 5 years. During the prospective study, 122/130 cases were examined for evidence of STEC infection using PCR and/or serological assays and 105 (86%) had evidence of STEC infection. Serum antibodies to E. coli O157 LPS were detected in 79 (67%) cases tested. In conclusion, this study showed that STEC infection is an important cause of HUS in children in France, with a high proportion related to the O157 serogroup.


2017 ◽  
Vol 103 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Patrick R Walsh ◽  
Sally Johnson

Haemolytic uraemic syndrome (HUS), comprising microangiopathic haemolytic anaemia, thrombocytopaenia and acute kidney injury, remains the leading cause of paediatric intrinsic acute kidney injury, with peak incidence in children aged under 5 years. HUS most commonly occurs following infection with Shiga toxin-producing Escherichia coli (STEC-HUS). Additionally, HUS can occur as a result of inherited or acquired dysregulation of the alternative complement cascade (atypical HUS or aHUS) and in the setting of invasive pneumococcal infection. The field of HUS has been transformed by the discovery of the central role of complement in aHUS and the dawn of therapeutic complement inhibition. Herein, we address these three major forms of HUS in children, review the latest evidence for their treatment and discuss the management of STEC infection from presentation with bloody diarrhoea, through to development of fulminant HUS.


2019 ◽  
Vol 79 (2) ◽  
pp. 75-94 ◽  
Author(s):  
Loukas Kakoullis ◽  
Eleni Papachristodoulou ◽  
Paraskevi Chra ◽  
George Panos

2013 ◽  
Vol 62 (11) ◽  
pp. 1760-1762 ◽  
Author(s):  
Parameswaran Narayanan ◽  
Rashi S. Rustagi ◽  
Prabha Sivaprakasam ◽  
Mahadevan Subramanian ◽  
Sreejith Parameswaran ◽  
...  

Haemolytic uraemic syndrome (HUS) is a recognized complication of infection with Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae type 1. Infections with other micro-organisms, especially Streptococcus pneumoniae, have been cited as causes of HUS. In addition, influenza virus and other viruses may rarely be associated with this syndrome. A 2-year-old girl presented with severe Pseudomonas aeruginosa sepsis with renal failure and ecthyma gangrenosum. Further investigations revealed features of HUS. She was managed with antibiotics and other supportive measures including peritoneal dialysis, and subsequently made a full recovery. A possible role of neuraminidase in the pathogenesis of P. aeruginosa-associated HUS was proposed. This is the first reported case of P. aeruginosa sepsis leading to HUS.


2013 ◽  
Vol 141 (12) ◽  
pp. 2503-2515 ◽  
Author(s):  
K. VERSTRAETE ◽  
K. DE REU ◽  
S. VAN WEYENBERG ◽  
D. PIÉRARD ◽  
L. DE ZUTTER ◽  
...  

SUMMARYIn this study, we characterized 272 Shiga toxin-producingEscherichia coli(STEC) isolates from humans, food, and cattle in Belgium [O157 (n = 205), O26 (n = 31), O103 (n = 15), O111 (n = 10), O145 (n = 11)] for their virulence profile, whole genome variations and relationships on different genetic levels. Isolates of O157 displayed a wide variation ofstxgenotypes, heterogeneously distributed among pulsogroups (80% similarity), but with a concordance at the pulsosubgroup level (90% similarity). Of all serogroups evaluated, the presence ofeaewas conserved, whereas genes encoded on the large plasmid (ehx,espP,katP) occurred in variable combinations in O26, O103, and O145. The odds of having haemolytic uraemic syndrome was less for all genotypesstx2a,stx2c,stx1/stx2c, andstx1compared to genotypestx2a/stx2c; and for patients aged >5 years compared to patients aged ⩽5 years. Based on the genetic typing and by using epidemiological data, we could confirm outbreak isolates and suggest epidemiological relationships between some sporadic cases. Undistinguishable pulsotypes or clones with minor genotypic variations were found in humans, food, and cattle in different years, which demonstrated the important role of cattle as a reservoir of STEC O157, and the circulation and persistence of pathogenic clones.


2019 ◽  
Vol 147 ◽  
Author(s):  
N. L. Adams ◽  
L. Byrne ◽  
T. C. Rose ◽  
G. K. Adak ◽  
C. Jenkins ◽  
...  

Abstract Shiga toxin-producing Escherichia coli (STEC) infection can cause serious illness including haemolytic uraemic syndrome. The role of socio-economic status (SES) in differential clinical presentation and exposure to potential risk factors amongst STEC cases has not previously been reported in England. We conducted an observational study using a dataset of all STEC cases identified in England, 2010–2015. Odds ratios for clinical characteristics of cases and foodborne, waterborne and environmental risk factors were estimated using logistic regression, stratified by SES, adjusting for baseline demographic factors. Incidence was higher in the highest SES group compared to the lowest (RR 1.54, 95% CI 1.19–2.00). Odds of Accident and Emergency attendance (OR 1.35, 95% CI 1.10–1.75) and hospitalisation (OR 1.71, 95% CI 1.36–2.15) because of illness were higher in the most disadvantaged compared to the least, suggesting potential lower ascertainment of milder cases or delayed care-seeking behaviour in disadvantaged groups. Advantaged individuals were significantly more likely to report salad/fruit/vegetable/herb consumption (OR 1.59, 95% CI 1.16–2.17), non-UK or UK travel (OR 1.76, 95% CI 1.40–2.27; OR 1.85, 95% CI 1.35–2.56) and environmental exposures (walking in a paddock, OR 1.82, 95% CI 1.22–2.70; soil contact, OR 1.52, 95% CI 2.13–1.09) suggesting other unmeasured risks, such as person-to-person transmission, could be more important in the most disadvantaged group.


Sign in / Sign up

Export Citation Format

Share Document