Faculty Opinions recommendation of A minimal biophysical model of neocortical pyramidal cells: implications for frontal cortex microcircuitry and field potential generation.

Author(s):  
Adonis Moschovakis
2020 ◽  
Vol 40 (44) ◽  
pp. 8513-8529
Author(s):  
Beatriz Herrera ◽  
Amirsaman Sajad ◽  
Geoffrey F. Woodman ◽  
Jeffrey D. Schall ◽  
Jorge J. Riera

2019 ◽  
Author(s):  
Jan L. Klee ◽  
Amanda J Kiliaan ◽  
Arto Lipponen ◽  
Francesco P. Battaglia

AbstractIn recent years aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer’s disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high density silicon probe recordings from frontal cortex area of 9 months old APP/PS1 mice to show that resting state Local Field Potential (LFP) power in the theta and beta band is increased in transgenic animals, while single cell firing rates, specifically of putative pyramidal cells, are significantly reduced. At the same time, these sparsely firing pyramidal cells phase-lock their spiking activity more strongly to the ongoing theta and beta rhythms. Furthermore, we demonstrated that the anti-epileptic drug, levetiracetam, can restore principal cell firing rates back to control levels. Overall, our results highlight reduced firing rates of cortical pyramidal cells as a symptom of amyloid pathology and indicate that lifting cortical inhibition might contribute to the beneficial effects of levetiracetam on AD patients.Abstract Figure


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 294
Author(s):  
Agnieszka Zelek-Molik ◽  
Bartosz Bobula ◽  
Anna Gądek-Michalska ◽  
Katarzyna Chorązka ◽  
Adam Bielawski ◽  
...  

This study demonstrates how exposure to psychosocial crowding stress (CS) for 3, 7, and 14 days affects glutamate synapse functioning and signal transduction in the frontal cortex (FC) of rats. CS effects on synaptic activity were evaluated in FC slices of the primary motor cortex (M1) by measuring field potential (FP) amplitude, paired-pulse ratio (PPR), and long-term potentiation (LTP). Protein expression of GluA1, GluN2B mGluR1a/5, VGLUT1, and VGLUT2 was assessed in FC by western blot. The body’s response to CS was evaluated by measuring body weight and the plasma level of plasma corticosterone (CORT), adrenocorticotropic hormone (ACTH), and interleukin 1 beta (IL1B). CS 3 14d increased FP and attenuated LTP in M1, while PPR was augmented in CS 14d. The expression of GluA1, GluN2B, and mGluR1a/5 was up-regulated in CS 3d and downregulated in CS 14d. VGLUTs expression tended to increase in CS 7d. The failure to blunt the effects of chronic CS on FP and LTP in M1 suggests the impairment of habituation mechanisms by psychosocial stressors. PPR augmented by chronic CS with increased VGLUTs level in the CS 7d indicates that prolonged CS exposure changed presynaptic signaling within the FC. The CS bidirectional profile of changes in glutamate receptors’ expression seems to be a common mechanism evoked by stress in the FC.


1986 ◽  
Vol 56 (2) ◽  
pp. 409-423 ◽  
Author(s):  
A. Konnerth ◽  
U. Heinemann ◽  
Y. Yaari

Epileptiform activity induced in rat hippocampal slices by lowering extracellular Ca2+ concentration ([Ca2+]o) was studied with extracellular and intracellular recordings. Perfusing the slices with low Ca2+ (less than or equal to 0.2 mM) or EGTA-containing solutions blocked the synaptic responses of hippocampal pyramidal cells (HPCs). Despite the block, spontaneous paroxysms, termed seizurelike events (SLEs), appeared in the CA1 area and then recurred regularly at a stable frequency. Transient hypoxia accelerated their development and increased their frequency. When [Ca2+]o was raised in a stepwise manner, the SLEs disappeared at 0.3 mM. With extracellular recording from the CA1 stratum pyramidale, a SLE was characterized by a large negative shift in the field potential, which lasted for several seconds. During this period a large population of CA1 neurons discharged intensely and often in synchrony, as concluded from the frequent appearance of population spikes. Synchronization, however, was not a necessary precursor for the development of paroxysmal activity, but seemed to be the end result of massive neuronal excitation. The cellular counterpart of a SLE, as revealed by intracellular recording from HPCs in the discharge zone of the paroxysms, was a long-lasting depolarization shift (LDS) of up to 20 mV. This was accompanied by accelerated firing of the neuron. A prolonged after-hyperpolarization succeeded each LDS and arrested cell firing. Brief (approximately 50 ms) bursts were commonly observed before LDS onset. Single electrical stimuli applied focally to the stratum pyramidale or alveus evoked paroxysms identical to the spontaneous SLEs, provided they surpassed a critical threshold intensity. Subthreshold stimuli elicited only small local responses, whereas stimuli of varied suprathreshold intensities evoked the same maximal SLEs. Thus the buildup of a SLE is an all or nothing or a regenerative process, which mobilizes the majority, if not all, of the local neuronal population. Each SLE was followed by absolute and relative refractory periods during which focal stimulation was, respectively, ineffective and less effective in evoking a maximal SLE. In most slices the spontaneous SLEs commenced at a "focus" located in the CA1a subarea (near the subiculum). SLEs evoked by focal stimulation arose near the stimulating electrode. From their site of origin the paroxysmal discharges spread transversely through the entire CA1 area at a mean velocity of 1.74 mm/s. Consequently, the discharge zone of a SLE could encompass for several seconds the entire CA1 area.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 87 (2) ◽  
pp. 1169-1174 ◽  
Author(s):  
Yoshikazu Isomura ◽  
Yoko Fujiwara-Tsukamoto ◽  
Michiko Imanishi ◽  
Atsushi Nambu ◽  
Masahiko Takada

Low concentration of Ni2+, a T- and R-type voltage-dependent calcium channel (VDCC) blocker, is known to inhibit the induction of long-term potentiation (LTP) in the hippocampal CA1 pyramidal cells. These VDCCs are distributed more abundantly at the distal area of the apical dendrite than at the proximal dendritic area or soma. Therefore we investigated the relationship between the Ni2+-sensitivity of LTP induction and the synaptic location along the apical dendrite. Field potential recordings revealed that 25 μM Ni2+ hardly influenced LTP at the proximal dendritic area (50 μm distant from the somata). In contrast, the same concentration of Ni2+ inhibited the LTP induction mildly at the middle dendritic area (150 μm) and strongly at the distal dendritic area (250 μm). Ni2+ did not significantly affect either the synaptic transmission at the distal dendrite or the burst-firing ability at the soma. However, synaptically evoked population spikes recorded near the somata were slightly reduced by Ni2+ application, probably owing to occlusion of dendritic excitatory postsynaptic potential (EPSP) amplification. Even when the stimulating intensity was strengthened sufficiently to overcome such a reduction in spike generation during LTP induction, the magnitude of distal LTP was not significantly recovered from the Ni2+-dependent inhibition. These results suggest that Ni2+ may inhibit the induction of distal LTP directly by blocking calcium influx through T- and/or R-type VDCCs. The differentially distributed calcium channels may play a critical role in the induction of LTP at dendritic synapses of the hippocampal pyramidal cells.


2019 ◽  
Author(s):  
Jim W. Kay ◽  
W. A. Phillips ◽  
Jaan Aru ◽  
Bruce P. Graham ◽  
Matthew E. Larkum

AbstractPyramidal cells in layer 5 of the neocortex have two distinct integration sites. These cells integrate inputs to basal dendrites in the soma while integrating inputs to the tuft in a site at the top of the apical trunk. The two sites communicate by action potentials that backpropagate to the apical site and by backpropagation-activated calcium spikes (BAC firing) that travel from the apical to the somatic site. Six key messages arise from the probabilistic information-theoretic analyses of BAC firing presented here. First, we suggest that pyramidal neurons with BAC firing could convert the odds in favour of the presence of a feature given the basal data into the odds in favour of the presence of a feature given the basal data and the apical input, by a simple Bayesian calculation. Second, the strength of the cell’s response to basal input can be amplified when relevant to the current context, as specified by the apical input, without corrupting the message that it sends. Third, these analyses show rigorously how this apical amplification depends upon communication between the sites. Fourth, we use data on action potentials from a very detailed multi-compartmental biophysical model to study our general model in a more realistic setting, and demonstrate that it describes the data well. Fifth, this form of BAC firing meets criteria for distinguishing modulatory from driving interactions that have been specified using recent definitions of multivariate mutual information. Sixth, our general decomposition can be extended to cases where, instead of being purely driving or purely amplifying, apical and basal inputs can be partly driving and partly amplifying to various extents. These conclusions imply that an advance beyond the assumption of a single site of integration within pyramidal cells is needed, and suggest that the evolutionary success of neocortex may depend upon the cellular mechanisms of context-sensitive selective amplification hypothesized here.Author summaryThe cerebral cortex has a key role in conscious perception, thought, and action, and is predominantly composed of a particular kind of neuron: the pyramidal cells. The distinct shape of the pyramidal neuron with a long dendritic shaft separating two regions of profuse dendrites allows them to integrate inputs to the two regions separately and combine the results non-linearly to produce output. Here we show how inputs to this more distant site strengthen the cell’s output when it is relevant to the current task and environment. By showing that such neurons have capabilities that transcend those of neurons with the single site of integration assumed by many neuroscientists, this ‘splitting of the neuronal atom’ offers a radically new viewpoint from which to understand the evolution of the cortex and some of its many pathologies. This also suggests that approaches to artificial intelligence using neural networks might come closer to something analogous to real intelligence, if, instead of basing them on processing elements with a single site of integration, they were based on elements with two sites, as in cortex.


1990 ◽  
Vol 64 (6) ◽  
pp. 1747-1757 ◽  
Author(s):  
M. Avoli ◽  
C. Drapeau ◽  
P. Perreault ◽  
J. Louvel ◽  
R. Pumain

1. Extracellular and intracellular recordings and measurements of the extracellular concentration of free K+ ([K+]o) were performed in the CA1 subfield of the rat hippocampal slice during perfusion with artificial cerebrospinal fluid (ACSF) in which NaCl had been replaced with equimolar Na-isethionate or Na-methylsulfate (hereafter called low Cl- ACSF). 2. CAl pyramidal cells perfused with low Cl- ACSF generated intracellular epileptiform potentials in response to orthodromic, single-shock stimuli delivered in stratum (S.) radiatum. Low-intensity stimuli evoked a short-lasting epileptiform burst (SB) of action potentials that lasted 40–150 ms and was followed by a prolonged hyperpolarization. When the stimulus strength was increased, a long-lasting epileptiform burst (LB) appeared; it had a duration of 4–15 s and consisted of an early discharge of action potentials similar to the SB, followed by a prolonged, large-amplitude depolarizing plateau. The refractory period of the LB was longer than 20 s. SB and LB were also seen after stimulation of the alveus. 3. Variations of the membrane potential with injection of steady. DC current modified the shape of SB and LB. When microelectrodes filled with the lidocaine derivative QX-314 were used, the amplitudes of both SB and LB increased in a linear fashion during changes of the baseline membrane potential in the hyperpolarizing direction. The membrane input resistance, as measured by injecting brief square pulses of hyperpolarizing current, decreased by 65-80% during the long-lasting depolarizing plateau of LB. 4. A synchronous field potential and a transient increase in [K+]o accompanied the epileptiform responses. The extracellular counterpart of the SB was a burst of three to six population spikes and a small increase in [K+]o (less than or equal to 2 mM from a resting value of approximately 2.5 mM). The LB was associated with a large-amplitude, biphasic, negative field potential and a large increase in [K+]o (up to 12.4 mM above the resting value). Changes in [K+]o during the LB were largest at the border between S. oriens and S. pyramidale. This was also the site where the field potentials measured 2–5 s after the stimulus attained their maximal amplitude. Conversely, field potentials associated with the early component of the LB or with the SB displayed a maximal amplitude in the S. radiatum. 5. Spontaneous SBs and LBs were at times recorded in the CA1 and in the CA3 subfield.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 56 (6) ◽  
pp. 1718-1738 ◽  
Author(s):  
J. W. Swann ◽  
R. J. Brady ◽  
R. J. Friedman ◽  
E. J. Smith

Experiments were performed in order to identify the sites of epileptiform burst generation in rat hippocampal CA3 pyramidal cells. A subsequent slow field potential was studied, which is associated with afterdischarge generation. Laminar field potential and current source-density (CSD) methods were employed in hippocampal slices exposed to penicillin. Simultaneous intracellular and extracellular field recordings from the CA3 pyramidal cell body layer showed that whenever an epileptiform burst was recorded extracellularly, individual CA3 neurons underwent an intense depolarization shift. In extracellular records a slow negative field potential invariably followed epileptiform burst generation. In approximately 10% of slices, synchronous afterdischarges rode on the envelope of this negative field potential. Intracellularly a depolarizing afterpotential followed the depolarization shift and was coincident with the extracellular slow negative field potential. A one-dimensional CSD analysis performed perpendicular to the CA3 cell body layer showed that during epileptiform burst generation large current sinks occur simultaneously in the central portions of both the apical and basilar dendrites. The average distance of the peak amplitude for these sinks from the center of the cell body layer was 175 +/- 46.8 microns and 158 +/- 25.0 microns, respectively. A large current source was recorded in the cell body layer. Smaller current sources were observed in the distal portions of the dendritic layers. During the postburst slow field potential a current sink was recorded at the edge of the cell body layer in stratum oriens--a region referred to as the infrapyramidal zone. Simultaneous with the current sink recorded there, smaller sinks were often observed in the dendritic layers that appeared to be "tails" or prolongations of the currents underlying burst generation. Two-dimensional analyses of these field potentials were performed on planes parallel and perpendicular to the exposed surface of the slice. Isopotential contours showed that the direction of extracellular current is mainly orthogonal to the CA3 laminae. Correction of CSD estimates made perpendicular to the cell body layer for current flowing in the other direction did not alter the location of computed current sources and sinks. In order to show that the dendritic currents associated with epileptiform burst generation were active sinks, tetrodotoxin (TTX) was applied locally to the dendrites where the current sinks were recorded.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (3) ◽  
pp. 1018-1029 ◽  
Author(s):  
M. Avoli ◽  
C. Psarropoulou ◽  
V. Tancredi ◽  
Y. Fueta

1. Extracellular field potential and intracellular recordings were made in the CA3 subfield of hippocampal slices obtained from 10- to 24-day-old rats during perfusion with artificial cerebrospinal fluid (ACSF) containing the convulsant 4-aminopyridine (4-AP, 50 microM). 2. Three types of spontaneous, synchronous activity were recorded in the presence of 4-AP by employing extracellular microelectrodes positioned in the CA3 stratum (s.) radiatum: first, inter-ictal-like discharges that lasted 0.2-1.2 s and had an occurrence rate of 0.3-1.3 Hz; second, ictal-like events (duration: 3-40 s) that occurred at 4-38 x 10(-3) Hz; and third, large-amplitude (up to 8 mV) negative-going potentials that preceded the onset of the ictal-like events and thus appeared to initiate them. 3. None of these synchronous activities was consistently modified by addition of antagonists of the N-methyl-D-aspartate (NMDA) receptor to the ACSF. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2-10 microM) reversibly blocked interictal- and ictallike discharges. The only synchronous, spontaneous activity recorded in this type of medium consisted of the negative-going potentials that were abolished by the GABAA receptor antagonists bicuculline methiodide (5-20 microM) or picrotoxin (50 microM). Hence they were mediated through the activation of the GABAA receptor. 4. Profile analysis of the 4-AP-induced synchronous activity revealed that the gamma-aminobutyric acid (GABA)-mediated field potential had maximal negative amplitude in s. lacunosum-moleculare, attained equipotentiality at the border between s. radiatum and s. pyramidale, and became positive-going in s. oriens. These findings indicated that the GABA-mediated field potential presumably represented a depolarization occurring in the dendrites of CA3 pyramidal cells. 5. This conclusion was supported by intracellular analysis of the 4-AP-induced activity. The GABA-mediated potential was reflected by a depolarization of the membrane of CA3 pyramidal cells that triggered a few variable-amplitude, fractionated spikes or fast action potentials. By contrast, the ictal-like discharge was associated with a prolonged depolarization during which repetitive bursts of action potentials occurred. Short-lasting depolarizations with bursts of action potentials occurred during each interictal-like discharge. 6. The GABA-mediated potential recorded intracellularly in the presence of CNQX consisted of a prolonged depolarization (up to 12 s) that was still capable of triggering a few fast action potentials and/or fractionated spikes.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shuai Cui ◽  
Shuqi Yao ◽  
Chunxiao Wu ◽  
Lulu Yao ◽  
Peidong Huang ◽  
...  

The descending motor nerve conduction of voluntary swallowing is mainly launched by primary motor cortex (M1). M1 can activate and regulate peripheral nerves (hypoglossal) to control the swallowing. Acupuncture at “Lianquan” acupoint (CV23) has a positive effect against poststroke dysphagia (PSD). In previous work, we have demonstrated that electroacupuncture (EA) could regulate swallowing-related motor neurons and promote swallowing activity in the essential part of central pattern generator (CPG), containing nucleus ambiguus (NA), nucleus of the solitary tract (NTS), and ventrolateral medulla (VLM) under the physiological condition. In the present work, we have investigated the effects of EA on the PSD mice in vivo and sought evidence for PSD improvement by electrophysiology recording and laser speckle contrast imaging (LSCI). Four main conclusions can be drawn from our study: (i) EA may enhance the local field potential in noninfarction area of M1, activate the swallowing-related neurons (pyramidal cells), and increase the motor conduction of noninfarction area in voluntary swallowing; (ii) EA may improve the blood flow in both M1 on the healthy side and deglutition muscles and relieve PSD symptoms; (iii) EA could increase the motor conduction velocity (MCV) in hypoglossal nerve, enhance the EMG of mylohyoid muscle, alleviate the paralysis of swallowing muscles, release the substance P, and restore the ability to drink water; and (iv) EA can boost the functional compensation of M1 in the noninfarction side, strengthen the excitatory of hypoglossal nerve, and be involved in the voluntary swallowing neural control to improve PSD. This research provides a timely and necessary experimental evidence of the motor neural regulation in dysphagia after stroke by acupuncture in clinic.


Sign in / Sign up

Export Citation Format

Share Document