scholarly journals Effect of crop residues on soil aggregate stability

2008 ◽  
pp. 23-32
Author(s):  
Andrea Huisz ◽  
Tibor Tóth ◽  
Tamás Németh

Soil structure may be improved by adding readily decomposable organic matter. The extent of amelioration depends on the chemical build-up and decomposability of the crop residues. Three different kinds of organic matters were investigated: (1) maize stem, (2) wheat straw, and (3) maize stem& wheat straw. Comparing the aggregate stabilizing effects of the differently decomposable organic matters to each other, the expected maize stem & wheat straw (mw) > maize stem (m) > wheat straw (w) order was proved.

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 527
Author(s):  
Gheorghe Stegarescu ◽  
Jordi Escuer-Gatius ◽  
Kaido Soosaar ◽  
Karin Kauer ◽  
Tõnu Tõnutare ◽  
...  

The decomposition of fresh crop residues added to soil for agricultural purposes is complex. This is due to different factors that influence the decomposition process. In field conditions, the incorporation of crop residues into soil does not always have a positive effect on aggregate stability. The aim of this study was to investigate the decomposition effects of residues from two different cover crops (Brassica napus var. oleifera and Secale cereale) and one main crop (wheat straw) on soil aggregate stability. A 105-day incubation experiment was conducted in which crop residues were mixed with sandy loam soil at a rate of 6 g C kg−1 of soil. During the incubation, there were five water additions. The decomposition effects of organic matter on soil conditions during incubation were evaluated by determining the soil functional groups; carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) emissions; soil microbial biomass carbon (MBC); and water-stable aggregates (WSA). The functional groups of the plant residues and the soil were analyzed using Fourier transform infrared spectroscopy (FTIR) and a double exponential model was used to estimate the decomposition rates. The results show that the decomposition rate of fresh organic materials was correlated with the soil functional groups and the C/N ratio. Oilseed rape and rye, with lower C/N ratios than wheat straw residues, had faster decomposition rates and higher CO2 and N2O emissions than wheat straw. The CO2 and N2O flush at the start of the experiment corresponded to a decrease of soil aggregate stability (from Day 3 to Day 10 for CO2 and from Day 19 to Day 28 for N2O emissions), which was linked to higher decomposition rates of the labile fraction. The lower decomposition rates contributed to higher remaining C (carbon) and higher soil aggregate stability. The results also show that changes in the soil functional groups due to crop residue incorporation did not significantly influence aggregate stability. Soil moisture (SM) negatively influenced the aggregate stability and greenhouse gas emissions (GHG) in all treatments (oilseed rape, rye, wheat straw, and control). Irrespective of the water addition procedure, rye and wheat straw residues had a positive effect on water-stable aggregates more frequently than oilseed rape during the incubation period. The results presented here may contribute to a better understanding of decomposition processes after the incorporation of fresh crop residues from cover crops. A future field study investigating the influence of incorporation rates of different crop residues on soil aggregate stability would be of great interest.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Li ◽  
Ningning Yin ◽  
Ruiwei Xu ◽  
Liping Wang ◽  
Zhen Zhang ◽  
...  

AbstractWe constructed a mining soil restoration system combining plant, complex substrate and microbe. Sludge was added to reconstructed mine substrates (RMS) to accelerate the reclamation process. The effect of sludge on plant growth, microbial activity, soil aggregate stability, and aggregation-associated soil characteristics was monitored during 10 years of reclamation. Results show that the height and total biomass of ryegrass increases with reclamation time. Sludge amendment increases the aggregate binding agent content and soil aggregate stability. Soil organic carbon (SOC) and light-fraction SOC (LFOC) in the RMS increase by 151% and 247% compared with those of the control, respectively. A similar trend was observed for the glomalin-related soil protein (GRSP). Stable soil aggregate indexes increase until the seventh year. In short, the variables of RMS determined after 3–7 years insignificantly differ from those of the untreated sample in the tenth-year. Furthermore, significant positive correlations between the GRSP and SOC and GRSP and soil structure-related variables were observed in RMS. Biological stimulation of the SOC and GRSP accelerates the recovery of the soil structure and ecosystem function. Consequently, the plant–complex substrate–microbe ecological restoration system can be used as an effective tool in early mining soil reclamation.


2016 ◽  
Vol 6 ◽  
Author(s):  
Bülent Turgut ◽  
Bahtiyar Köse

The influence of organic matter amendments on soil aggregate stability is well known, but the corresponding changes in recently deposited sediment are not well documented. In this study, improvements in aggregate stability of recently deposited sediment (RDS) supplemented with farmyard manure (FYM) and tea waste (TW) were evaluated during an 18-week incubation period under controlled conditions. FYM and TW were applied to RDS at different rates (0%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15% w/w), and aggregate stability was determined at different times of incubation (2<sup>nd</sup>, 4<sup>th</sup>, 6<sup>th</sup>, 8<sup>th</sup>, 10<sup>th</sup>, 14<sup>th</sup>, and 18<sup>th</sup> weeks) using wet sieving analysis. The results showed that the aggregate stability of RDS treated with TW was statistically significantly higher than those of samples treated with FYM. Aggregate stability increased with increasing rates of both FYM and TW. Aggregate stability reached the highest value at the end of the second week in FYM treated samples, and declined within the following incubation period. However, in the samples treated with TW, aggregate stability reached the highest value at the end of the eighth week. Since the results of this study clearly indicated that tea waste and farmyard manure input significantly increased the aggregate stability of RDS, it is suggested that TW and FYM could be used for structural stabilization of degraded soils.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Radka Kodešová ◽  
Marcela Rohošková ◽  
Anna Žigová

AbstractSoil structure stability was studied in every diagnostic horizons of six soil types (Haplic Chernozem, Greyic Phaeozem, two Haplic Luvisols, Haplic Cambisol, Dystric Cambisol) using different techniques investigating various destruction mechanisms of soil aggregates. Soil aggregate stability, assessed by the index of water stable aggregates (WSA), varied depending on the organic matter content, clay content and pHKCl. The presence of clay and organic matter coatings and fillings, and presence of iron oxides in some soils increased stability of soil aggregates. On the other hand periodical tillage apparently decreased aggregate stability in the Ap horizons. Coefficients of aggregate vulnerability resulting from fast wetting (KV 1) and slow wetting (KV 2) tests showed similar trends of the soil aggregate stability as the WSA index, when studied for soils developed on the similar parent material. There was found close correlation between the WSA index and the KV 1 value, which depended also on the organic matter content, clay content and pHKCl. Less significant correlation was obtained between the WSA index and the KV 2 value, which depended on the organic matter content and clay content. Coefficients of vulnerability resulting from the shaking after pre-wetting test (KV 3) showed considerably different trends in comparison to the other tests due to the different factors affecting aggregate stability against the mechanical destruction. The KV 3 value depended mostly on cation exchange capacity, pHKCl and organic matter content.


2017 ◽  
Vol 63 (13) ◽  
pp. 1823-1837 ◽  
Author(s):  
Eftekhar Baranian Kabir ◽  
Hossein Bashari ◽  
Mohammad Reza Mosaddeghi ◽  
Mehdi Bassiri

Sign in / Sign up

Export Citation Format

Share Document