scholarly journals Effect of bacteria containing bio-fertilizer on Cd-tolerance of corn and sunflower seedlings in nutrient solution

2009 ◽  
pp. 15-21
Author(s):  
Éva Gajdos

Bio-fertilizers promote the nutrition uptake, firstly enhance the baring and mobility of nutrients, on the other hand biofertilizers elevate nutrient uptake in direct way. Although there are a lot of questions about their application in polluted soils. The  cadmium ion is easily collectable and also transportable inside plants. Thus the Cd can get into the food-chain causing public health problems. The cadmium treatment decreases the dry matter accumulation, and the intensity of photosynthesis at the experimental plants, while the treatments with bio-fertilizer increased these parameters. The cadmium accumulated in the roots, the transport to the shoots was low. We came to the conclusion, that –because of the different nutrient-uptake systemthe sunflower took up more cadmium. Using bacterium containing bio-fertilizer the toxic effect of cadmium was moderated. By our experimental results the use of Phylazonit is offered under contaminated conditions.

1989 ◽  
Vol 25 (3) ◽  
pp. 349-355 ◽  
Author(s):  
S. S. Parihar ◽  
R. S. Tripathi

SUMMARYThe response of chickpea to irrigation and phosphorus was studied at Kharagpur in Eastern India. Irrigation scheduling was based on the ratio between irrigation water applied and cumulative pan evaporation (ID/CPE), and had little effect on dry matter accumulation. Increasing the frequency and amount of irrigation reduced the number and dry weight of nodules per plant, which increased to a maximum 70 days after sowing and then declined. Irrigation significantly reduced grain yield as a result of excessive vegetative growth at the expense of pod formation. Application of phosphorus promoted nodulation and increased both nodule dry weight and the concentration of N, P and K in grain and stover. Uptake of N, P and K by the crop was also increased.


1969 ◽  
Vol 78 (3-4) ◽  
pp. 87-98
Author(s):  
Ricardo Goenaga

There is tittle information regarding optimum water requirement for tanier grown under semiarid conditions with irrigation. A study was conducted to determine the growth, nutrient uptake and yield performance of tanier plants irrigated with the equivalent of fractions of evapotranspiration. The irrigation regimes were based on class A pan factors ranging from 0.33 to 1.32 with increments of 0.33. Tanier plants grown under field conditions were harvested for biomass production about every 6 weeks during the growing season. At each harvest, plants were separated into various plant parts to determine dry matter accumulation, N, P, K, Ca, Mg, and Zn uptake and yield. During the first 278 days after planting, plants replenished with 99 and 132% of the water lost through evapotranspiration (WLET) exhibited similar total dry matter content; however, their dry matter content was significantly greater than that in plants supplied with 33 and 66% WLET. The amount of N, P, K, Ca, Mg, and Zn taken up by plants replenished with 99 and 132 WLET was similar, whereas the content of these nutrients in plants replenished with 33 and 66% WLET was considerably lower. The yield of plants replenished with 99% WLET was considerably greater than that of plants supplied with 33 and 66% WLET, but significantly lower than that from plants receiving 132% WLET. Maximum cormel yields of 19,479 kg/ha were obtained from plants replenished with 132% WLET.


2020 ◽  
Vol 44 (4) ◽  
pp. 508-522
Author(s):  
Waldenio Antonio de Araújo ◽  
Rafaela Silva Santana ◽  
Munir Mauad ◽  
Robervaldo Soares da Silva

Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 774-780 ◽  
Author(s):  
Carol J. Bubar ◽  
Ian N. Morrison

The growth of green foxtail (Setaria viridisL. Beauv. ♯3SETVI) and yellow foxtail [S. lutescens(Weigel.) Hubb. ♯ SETLU] in full sunlight, under 55 and 73% shade and within a wheat (Triticum aestivumL. ‘Neepawa’) stand, was compared in field experiments conducted over 3 yr. Shade resulted in a proportionately greater reduction in tiller number of yellow foxtail than of green foxtail. Plants growing in full sunlight produced up to five times more tillers than those growing in the crop. Averaged over the 3 yr, the two shade treatments reduced dry-matter accumulation of both species by 40% or more. The dry weight of plants within the crop was only about one-eighth of that of plants grown in full sunlight. Under both shade treatments and in the crop, yellow foxtail was consistently taller than green foxtail. Nevertheless, no differences in dry weight occurred between species under either shade treatment or in the crop. The results indicate that neither of the two species is distinctly more shade tolerant than the other, nor better adapted to compete with wheat.


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Muhammad Zeeshan Mehmood ◽  
Obaid Afzal ◽  
Mukhtar Ahmed ◽  
Ghulam Qadir ◽  
Ahmed M.S. Kheir ◽  
...  

AbstractSulphur (S) is considered to improve the nutrient uptake of plants due to its synergistic relationship with other nutrients. This could ultimately enhance the seed yield of oilseed crops. However, there is limited quantitative information on nutrient uptake, distribution, and its associated impacts on seed yield of sesame under the S application. Thus, a two-year field study (2018 and 2019) was conducted to assess the impacts of different S treatments (S0 = Control, S20 = 20, S40 = 40, and S60 = 60 kg ha−1) on total dry matter production, nitrogen, phosphorus, potassium, S uptake and distribution at the mid-bloom stage and physiological maturity. Furthermore, treatment impacts were studied on the number of capsules per plant, number of seeds per capsule, thousand seed weight, and seed yield at physiological maturity in sesame. Compared to S0, over the years, treatment S40 significantly increased the total uptake of nitrogen, phosphorus, potassium, and S (by 13, 22, 11% and 16%, respectively) at physiological maturity, while their distribution by 13, 36, 14, and 24% (in leaves), 12, 15, 11, and 15% (in stems), 15, 42, 18, and 10% (in capsules), and 14, 22, 9, and 15% (in seeds), respectively. Enhanced nutrient uptake and distribution in treatment S40 improved the total biomass accumulation (by 28%) and distribution in leaves (by 34%), stems (by 27%), capsules (by 26%), and seeds (by 28%), at physiological maturity, as compared to S0. Treatment S40 increased the number of capsules per plant (by 13%), number of seeds per capsule (by 11%), and thousand seed weight (by 6%), compared to S0. Furthermore, over the years, relative to control, sesame under S40 had a higher seed yield by 28% and enhanced the net economic returns by 44%. Thus, our results suggest that optimum S level at the time of sowing improves the nutrient uptake and distribution during the plant lifecycle, which ultimately enhances total dry matter accumulation, seed yield, and net productivity of sesame.


2019 ◽  
Vol 111 (4) ◽  
pp. 2038-2046 ◽  
Author(s):  
Ramdeo Seepaul ◽  
Jim Marois ◽  
Ian M. Small ◽  
Sheeja George ◽  
David L. Wright

Sign in / Sign up

Export Citation Format

Share Document