Dry Matter, Nodulation and Nutrient Uptake in Chickpea (Cicer arietinum) as Influenced by Irrigation and Phosphorus

1989 ◽  
Vol 25 (3) ◽  
pp. 349-355 ◽  
Author(s):  
S. S. Parihar ◽  
R. S. Tripathi

SUMMARYThe response of chickpea to irrigation and phosphorus was studied at Kharagpur in Eastern India. Irrigation scheduling was based on the ratio between irrigation water applied and cumulative pan evaporation (ID/CPE), and had little effect on dry matter accumulation. Increasing the frequency and amount of irrigation reduced the number and dry weight of nodules per plant, which increased to a maximum 70 days after sowing and then declined. Irrigation significantly reduced grain yield as a result of excessive vegetative growth at the expense of pod formation. Application of phosphorus promoted nodulation and increased both nodule dry weight and the concentration of N, P and K in grain and stover. Uptake of N, P and K by the crop was also increased.

Author(s):  
Brijbhooshan ◽  
V. K. Singh ◽  
Shalini

A field experiment was conducted during rabi seasons of 2007-08 and 2008-09 on mollisols at G.B. Pant University of Agriculture & Technology, Pantnagar to study the performance of fieldpea (Pisum sativum L.var arvense) under different planting methods, irrigation levels and weed management practices. Results revealed that growth attributes as plant height, number of branches and dry matter accumulation per plant, number and dry weight of nodules per plant, density and dry matter of weeds/unit area, nutrient uptake and yield attributes as pods/plant, 1000-grain weight, grain yield/plant and grain yield of fieldpea were significantly higher under raised bed planting as compared to flat bed. Planting on raised bed increased grain yield of fieldpea by 17.5% over flat bed. Two irrigations applied at critical stages i.e. pre-flowering and pod formation proved promising in increasing the growth, nutrient uptake, yield attributes and grain yield of pea. One hand weeding done at 25 days after sowing (DAS) reduced the density and dry matter of weeds significantly and one hand weeding done at 25 DAS increased the values of growth attributes, number and dry weight of nodules, nutrient uptake, yield attributes and grain yield as compared to pendimethalin 1.0 kg a.i./ha applied as pre-emergence and weedy check.


2021 ◽  
Author(s):  
Dinesh Jinger ◽  
Shiva Dhar ◽  
Anchal Dass ◽  
VK Sharma ◽  
Venkatesh Paramesh ◽  
...  

Abstract Rice is known to be a nutrient exhaustive crop and the application of silicon (Si) has been reported for the better utilization of plant nutrients from the soil. Hence, the response of the plant to phosphorus (P) could be enhanced by co-fertilization of Si and P. The present study evaluates the dry matter production (DMP), grain yield, nutrients uptake, and nutrient-use efficiency (NUE) of Si and P application in aerobic rice (AR). Therefore, a field experiment was conducted at ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India in a factorial randomized block design (FRBD), the treatments comprised four levels of Si (0, 40, 80, and 120 kg Si ha–1) and P (0, 30, 60, and 90 kg P2O5 ha–1) application. The results revealed the significant effect of Si and P application on DMA, grain yield, and nutrient uptake in AR. The highest DMP and grain yield of AR was found with the combination of 120 kg Si and 90 kg P2O5 ha–1 closely followed by the combination of 80 kg Si and 60 kg P2O5 ha–1. The rate of increase in DMP due to different doses of Si and P ranged between 7.6–25.6% over control. A strong positive relationship was observed between different doses of Si and P and concentrations and uptakes of different nutrients, barring zinc (Zn). Application of Si and P elevated the grain concentration of Si, nitrogen (N), P, and potassium (K) by 25, 16.5, 47, and 25%, respectively, over control. Overall, the addition of Si and P application in nutrient management could increase the productivity and NUE of AR.


1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


1984 ◽  
Vol 11 (1) ◽  
pp. 4-6 ◽  
Author(s):  
D. K. Pahalwan ◽  
R. S. Tripathi

Abstract Field experiment was conducted during dry season of 1981 and 1982 to determine the optimal irrigation schedule for summer peanuts (Arachis hypogaea L.) in relation to evaporative demand and crop water requirement at different growth stages. It was observed that peanut crop requires a higher irrigation frequency schedule during pegging to pod formation stage followed by pod development to maturity and planting to flowering stages. The higher pod yield and water use efficiency was obtained when irrigations were scheduled at an irrigation water to the cumulative pan evaporation ratio of 0.5 during planting to flowering, 0.9 during pegging to pod formation and 0.7 during pod development to maturity stage. The profile water contribution to total crop water use was higher under less frequent irrigation schedules particularly when the irrigations were scheduled at 0.5 irrigation water to the cumulative pan evaporation ratio up to the pod formation stage.


Irriga ◽  
2017 ◽  
Vol 22 (3) ◽  
pp. 469-484 ◽  
Author(s):  
Maria Ângela Casimiro Lopes ◽  
Rafael Vitor da Silveira Muniz ◽  
Samara Sibelle Vieira Alves ◽  
Aline Costa Ferreira ◽  
Francisco Vanies da Silva Sá ◽  
...  

ÁGUA SALINA E SUBSTRATOS NO CRESCIMENTO INICIAL DO MELOEIRO   MARIA ÂNGELA CASIMIRO LOPES1; RAFAEL VITOR DA SILVEIRA MUNIZ1; SAMARA SIBELLE VIEIRA ALVES2; ALINE COSTA FERREIRA1; FRANCISCO VANIES DA SILVA SÁ3 E LUDERLÂNDIO DE ANDRADE SILVA3 1 Unidade Acadêmica de Ciências Agrárias, Universidade Federal de Campina Grande, UFCG, Pombal, PB, Brasil, [email protected], [email protected], [email protected] Unidade Acadêmica de Garanhuns, Universidade Federal Rural do Pernambuco, UFRPE, Garanhuns, PE, Brasil, [email protected] Centro de Ciências e Recursos Naturais, Universidade Federal de Campina Grande, UFCG, Campina Grande, PB, Brasil, [email protected], [email protected]  1 RESUMO Objetivou-se estudar a produção de mudas de meloeiro em função de diferentes substratos irrigados com água salina. O experimento foi desenvolvido em casa de vegetação no município de Pombal, Paraíba PB, no período de abril a maio de 2015. Adotou-se o delineamento experimental inteiramente casualizado, em esquema fatorial 4 x 3 x 2 constituído de quatro níveis de salinidade da água de irrigação - CEa (0,3; 1,5; 3,0 e 4,5 dS m-1) e três substratos [S1= solo; S2= solo + composto orgânico (2:1); e S3 = solo + esterco bovino (2:1)], e duas variedades de melão (V1= Melão Gaúcho Casca de Carvalho; V2= Hales Best Jumbo), com quatro repetições e três plantas úteis por repetição. As plantas foram conduzidas em recipientes com capacidade de 0,5 dm3 durante 32 dias após a semeadura, quando foram avaliadas quanto ao crescimento e acúmulo de matéria seca. O crescimento e o acúmulo de matéria seca de ambas as variedades foram reduzidos com o aumento da salinidade da água de irrigação. O crescimento e acúmulo de massa seca da variedade Hales Best Jumbo no substrato constituído de solo com composto orgânico foi menos afetado pelo estresse salino. A variedade Gaúcho Casca de Carvalho é a mais sensível ao estresse salino independente do substrato utilizado. Palavras-chave: Cucumis melo L.; estresse salino, composto orgânico.  LOPES, M. A. C.; MUNIZ, R. V. S.; ALVES, S. S. V.; FERREIRA, A. C.; SÁ, F. V. S.; ANDRADE SILVA, L. A.SALINE WATER AND SUBSTRATES ON INITIAL GROWTH IN MELON  2 ABSTRACT The aim was to study the production of melon seedlings for different substrates irrigated with saline water. The experiment was conducted in a greenhouse in the city of Pombal, Paraíba, PB, in the period April-May 2015. We adopted a completely randomized design in a factorial 4 x 3 x 2 design, consisting of four levels of irrigation water salinity (0.3, 1.5, 3.0 and 4.5 dS m-1) and three substrates [S1= ground; S2= soil + organic compound (2:1); and S3= soil + manure (2:1)] , and two varieties of melon (V1 = Gaúcho Casca de Carvalho; V2 = Hales Best Jumbo), with four replications and three plants per repetition. Plants were kept in containers with a capacity of 0.5 dm3 for 32 days after sowing, when they were evaluated for growth and accumulation of dry matter. Growth and dry matter accumulation of both varieties were reduced with increasing irrigation water salinity. The growth and accumulation of dry mass of the Hales Best Jumbo variety in the substrate composed of soil with organic compost was less affected by salt stress. The Gaúcho Casca de Carvalho variety is the most sensitive to salt stress regardless of the substrate used. Keywords: Cucumis melo L., salt stress, organic compound


Sign in / Sign up

Export Citation Format

Share Document