scholarly journals Metano entérico de bovinos de corte em condições de suplementação sob pastagem tropical brachiaria brizantha cv. Xaráes / Enteric methane from beef cattle under supplementation conditions under tropical pasture brachiaria brizantha cv. Xaráes

2021 ◽  
Vol 7 (6) ◽  
pp. 59844-59854
Author(s):  
Joilma Toniolo Honório De Carvalho ◽  
Ériton Egidio Lisboa Valente ◽  
Dieisson Gregory Grunevald ◽  
Tassiane Nunes Cabral ◽  
Mariana Barbizan ◽  
...  
2011 ◽  
Vol 91 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Aklilu Alemu ◽  
K. H. Ominski ◽  
E. Kebreab

Alemu, A. W., Ominski, K. H. and Kebreab, E. 2011. Estimation of enteric methane emissions trends (1990–2008) from Manitoba beef cattle using empirical and mechanistic models. Can. J. Anim. Sci. 91: 305–321. The objective of this study was to estimate and assess trends in enteric methane (CH4) emissions from the Manitoba beef cattle population from the base year of 1990 to 2008 using mathematical models. Two empirical (statistical) models: Intergovernmental Panel on Climate Change (IPCC) Tier 2 and a nonlinear equation (Ellis), and two dynamic mechanistic models: MOLLY (v3) and COWPOLL were used. Beef cattle in Manitoba were categorized in to 29 distinct subcategories based on management practice, physiological status, gender, age and production environment. Data on animal performance, feeding and management practices and feed composition were collected from the literature as well as from provincial and national sources. Estimates of total enteric CH4 production from the Manitoba beef cattle population varied between 0.9 and 2.4 Mt CO2 eq. from 1990 to 2008. Regardless of the type of models used, average CH4 emissions for 2008 were estimated to be 45.2% higher than 1990 levels. More specifically, CH4 emissions tended to increase between 1990 and 1996. Emissions were relatively stable between 1996 and 2002, increased between 2003 and 2005, but declined by 13.2% between 2005 and 2008, following the same trend as that observed in the beef cattle population. Models varied in their estimates of CH4 conversion rate (Ym, percent gross energy intake), emission factor (kg CH4 head−1 yr−1) and CH4 production. Total CH4 production estimates ranged from 1.2 to 2.0 Mt CO2 eq. for IPCC Tier 2, from 0.9 to 1.5 Mt CO2 eq. for Ellis, from 1.3 to 2.1 Mt CO2 eq. for COWPOLL and from 1.5 to 2.4 Mt CO2 eq. for MOLLY. The results indicate that enteric CH4 estimates and emission trends in Manitoba were influenced by the type of model and beef cattle population. As such, it is necessary to use appropriate models for reliable estimates for enteric CH4 inventory. A more robust approach may be to integrate different models by using mechanistic models to estimate regional Ym values, which may then be used as input for the IPCC Tier 2 model.


2020 ◽  
Vol 75 (2) ◽  
pp. 206-215
Author(s):  
Gustavo José Braga ◽  
Allan Kardec Braga Ramos ◽  
Marcelo Ayres Carvalho ◽  
Carlos Eduardo Lazarini Fonseca ◽  
Francisco Duarte Fernandes ◽  
...  

2019 ◽  
Vol 194 ◽  
pp. 104341 ◽  
Author(s):  
Abmael da Silva Cardoso ◽  
Serena Capriogli Oliveira ◽  
Estella Rosseto Janusckiewicz ◽  
Liziane Figueiredo Brito ◽  
Eliane da Silva Morgado ◽  
...  

2020 ◽  
Vol 184 ◽  
pp. 102917
Author(s):  
Cristiam Bosi ◽  
Paulo Cesar Sentelhas ◽  
Neil Ian Huth ◽  
José Ricardo Macedo Pezzopane ◽  
Mariana Pares Andreucci ◽  
...  

2019 ◽  
Vol 3 (4) ◽  
pp. 1383-1388 ◽  
Author(s):  
Breanna M Roque ◽  
Henk J Van Lingen ◽  
Hilde Vrancken ◽  
Ermias Kebreab

Abstract: Enteric methane (CH4) production is the main source of greenhouse gas emissions from livestock globally with beef cattle contributing 5.95% of total global greenhouse gas emissions. Various mitigation strategies have been developed to reduce enteric emissions with limited success. In vitro studies have shown a reduction in CH4 emissions when using garlic and citrus extracts. However, there is paucity of data regarding in vivo studies investigating the effect of garlic and citrus extracts in cattle. The objective of this study was to quantitatively evaluate the response of Angus × Hereford cross steers consuming the feed additive Mootral, which contains extracts of both garlic and citrus, on CH4 yield (g/kg dry matter intake [DMI]). Twenty steers were randomly assigned to two treatments: control (no additive) and Mootral supplied at 15 g/d in a completely randomized design with a 2-wk covariate and a 12-wk data collection periods. Enteric CH4 emissions were measured using the GreenFeed system during the covariate period and experimental weeks 2, 6, 9, and 12. CH4 yield (g/kg DMI) by steers remained similar in both treatments for weeks 2 to 9. In week 12, there was a significant decrease in CH4 yield (23.2%) in treatment compared to control steers mainly because the steers were consuming all the pellets containing the additive. However, overall CH4 yield (g/kg DMI) during the entire experimental period was not significantly different. Carbon dioxide yield (g/kg DMI) and oxygen consumption (g/kg DMI) did not differ between treatments during the entire experimental period. DMI, average daily gain, and feed efficiency also remained similar in control and supplemented steers. The in vivo results showed that Mootral may have a potential to be used as a feed additive to reduce enteric CH4 production and yield in beef cattle but needs further investigation under various dietary regimen.


2016 ◽  
Vol 37 (6) ◽  
pp. 4213
Author(s):  
Thiago Martins Pivaro ◽  
Wignez Henrique ◽  
Emanuel Almeida Oliveira ◽  
José Luiz Viana Coutinho Filho ◽  
Roberto Molinari Peres ◽  
...  

This research aimed to compare carcasses of purebred and crossbred Nellore females reared uniquely on pasture (Brachiaria decumbens and Brachiaria brizantha cv. Marandu). Breeds assessed consisted of purebred Nellore (16) and Nellore x Santa Gertrudis crossbred (16), being 32 ± 1.5 months old. All animals were slaughtered as they reached 450 kg. Crossbred females showed higher slaughter, hot and cold carcass weights and longer lengths (P < 0.05). Conversely, purebred animals attained greater carcass yields (P < 0.05). Nonetheless, crossbred females had higher primal cut weights and plate/ flank percentage (P < 0.05). Also, non-carcass components as kidneys, liver, kidney-pelvic-heart fat showed higher weights for crossbred females (P < 0.05). Thus, regarding beef cattle reared and finished exclusively on grazing areas, crossbred females (Nellore x Santa Gertrudis) may be the most profitable ones for cattle raisers, since they produce heavier slaughtering carcasses. Notwithstanding, they might be interesting for meat industry, for yielding more in prime cuts than purebreds, even if raised at the same conditions and slaughtered at same age.


2017 ◽  
Vol 38 (3) ◽  
pp. 1471 ◽  
Author(s):  
Marcell Patachi Alonso ◽  
Eduardo Henrique Bevitori Kling de Moraes ◽  
Dalton Henrique Pereira ◽  
Douglas Dos Santos Pina ◽  
Mircéia Angele Mombach ◽  
...  

The present study aimed to evaluate the nutritional parameters (intake and digestibility) of beef cattle in two genetic groups fed protein-energy supplements formulated by different levels of replacement of maize with pearl millet grain during the dry season. Sixty-four uncastrated young bulls, with an average age of 20 months and an initial body weight of 388 ± 26 kg, were included in the study. The experimental area consisted of four paddocks approximately 4.7 ha in size, composed of Brachiaria brizantha ‘Marandu’ within a crop-livestock integration system. The study was based on a completely randomized factorial design (2×4). Two genetic groups (Crossbred and Nellore) and the effects of replacement of maize with pearl millet grain at 0%, 33%, 66%, and 100% in the supplement formulations were assessed. No significant effects were observed in the genetic groups and with the replacement of maize with pearl millet grain, as well as in the pasture total dry matter (DM) and nutrients intake, or the coefficients of total digestibility of nutrients. The dietary concentration of digested organic matter was not influenced by the replacement levels of pearl millet grain, with values of 514.88, 515.76, 516.01, and 515.98 g kg-1 of DM recorded for the 0%, 33%, 66%, and 100% replacement levels, respectively. Therefore, pearl millet grain can be utilized as a partial or total substitute for maize grain as the energetic ingredient in concentrated supplements for Nellore and crossbred beef cattle in pastures managed in crop-livestock integration systems.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 380-381
Author(s):  
Isabella Cristina F Maciel ◽  
Fabiano A Barbosa ◽  
Thierry R Tomich ◽  
Ramon C Alvarenga ◽  
Ludhiana R Ferreira ◽  
...  

Abstract Crossbreeding has been used to improve performance in beef cattle; however, the effects of breed composition on methane production, yield and intensity from cattle in a tropical intensive system remain unknown. To assess the impact of breed composition on enteric methane emissions, Nellore (NE; yr 1: BW = 171.5 ± 19.4 kg; n = 10; yr 2: BW = 215.8 ± 32.3 kg, n = 25) and Angus-Nellore crossbred (AN; yr 1: BW = 214.2 ± 26.4 kg, n = 10; yr 2: BW = 242.5 ± 32.2 kg, n = 25) were compared. At trial onset, 10 mo old steers grazed Megathyrsus maximus ‘Mombaça’ in the grazing period (GP) and then were finished in a feedlot (FL) (35:65% corn silage:concentrate diet). Steers (n = 8) from each breed composition were randomly selected in GP and FL to measure CH4 production using a sulfur hexafluoride technique and DMI using titanium dioxide. The NE produced 19% less CH4 than AN in GP (17.21 vs 21.17 kg, P &lt; 0.01), and no difference was observed in FL (22.34 vs 22.67 kg, P &gt; 0.10). However, in FL, NE had greater CH4 intensity (CH4/ADG) compared to AN (122.76 vs 97.49 g/kg, P &lt; 0.01). Furthermore, CH4/carcass weight was greater for NE than AN (0.079 vs 0.067 g/kg CW, P &lt; 0.01). Breed composition did not influence CH4 yield (CH4/DMI) in either phase. The percentage CH4/GEI (Ym) for GP was higher for AN than NE (4.5 vs 3.8%), but lower than the IPCC recommended Ym of 6.5%. In FL, Ym was similar between breed composition (5.0%) and greater than the IPCC Ym of 3%. In our study the introduction of Angus into Nellore has potential to reduce CH4 intensity in tropical climates, resulting in less methane emission per kg beef produced.


Sign in / Sign up

Export Citation Format

Share Document