scholarly journals Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Feng Gao ◽  
Xiaoyang Zhang

Crop phenology is critical for agricultural management, crop yield estimation, and agroecosystem assessment. Traditionally, crop growth stages are observed from the ground, which is time-consuming and lacks spatial variability. Remote sensing Vegetation Index (VI) time series has been used to map land surface phenology (LSP) and relate to crop growth stages mostly after the growing season. In recent years, high temporal and spatial resolution remote sensing data have allowed near-real-time mapping of crop phenology within the growing season. This paper summarizes two classes of near-real-time mapping methods, i.e., curve-based and trend-based approaches. The curve-based approaches combine the time series VIs and crop growth stages from historical years with the current observations to estimate crop growth stages. The curve-based approaches are capable of a short-term prediction. The trend-based approaches detect upward or downward trends from time series and confirm the trends using the increasing or decreasing momentum and VI thresholds. The trend-based approaches only use current observations. Both curve-based and trend-based approaches are promising in mapping crop growth stages timely. Nevertheless, mapping crop phenology near real-time is challenging since remote sensing observations are not always sensitive to crop growth stages. The accuracy of crop phenology detection depends on the frequency and availability of cloud-free observations within the growing season. Recent satellite datasets such as the harmonized Landsat and Sentinel-2 (HLS) are promising for mapping crop phenology within the season over large areas. Operational applications in the near future are feasible.

Author(s):  
S. A. Sawant ◽  
M. Chakraborty ◽  
S. Suradhaniwar ◽  
J. Adinarayana ◽  
S. S. Durbha

Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (<a href="http://earthexplorer.usgs.gov/"target="_blank">http://earthexplorer.usgs.gov/</a>). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The results show that time series EO based crop growth stage estimates provide better information about geographically separated citrus orchards. Attempts are being made to estimate regional variations in citrus crop water requirement for effective irrigation planning. In future high resolution Sentinel 2 observations from European Space Agency (ESA) will be used to fill the time gaps and to get better understanding about citrus crop canopy parameters.


Author(s):  
S. A. Sawant ◽  
M. Chakraborty ◽  
S. Suradhaniwar ◽  
J. Adinarayana ◽  
S. S. Durbha

Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (<a href="http://earthexplorer.usgs.gov/"target="_blank">http://earthexplorer.usgs.gov/</a>). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The results show that time series EO based crop growth stage estimates provide better information about geographically separated citrus orchards. Attempts are being made to estimate regional variations in citrus crop water requirement for effective irrigation planning. In future high resolution Sentinel 2 observations from European Space Agency (ESA) will be used to fill the time gaps and to get better understanding about citrus crop canopy parameters.


Author(s):  
S. A. Sawant ◽  
J. D. Mohite ◽  
S. Pappula

<p><strong>Abstract.</strong> The rise in global population has increased food and water demand thereby causing excessive pressure on existing resources. In developing countries with fragmented land holdings there exists constant pressure on available water and land resources. Obtaining field scale crop specific information is challenging task. Advent of open freely available multi-temporal remote sensing observations with improved radiometric resolution the possibilities for near real / real time applications has increased. In this study and an attempt has been made to establish operational model for field level crop growth monitoring using integrated approach of crowd sourcing and time series of remote sensing observations. The time series of Sentinel 2 (A and B) satellite has been used to estimate crop growth related components such as vegetation indices and crop growth stage and crop phenology. In initial stage high valued cereal crop Wheat has been selected. The field level information (i.e. 108 Wheat fields) collected using mobile based agro-advisory platform mKRISHI&amp;reg; has been used to extract time series of Sentinel 2 observations (44 scenes for year 2016 and 2018). The moving average has been used for filling gaps in the time series of vegetation indices. The BFAST and GreenBrown package in R were used for detecting breaks in vegetation index time series and estimating crop growth stages. Analysis shows that the estimated crop phenology parameters were in better agreement with the field observations. In future more crops from different agro-climatic conditions will be considered for providing field level crop management advisory.</p>


2021 ◽  
Vol 58 (03) ◽  
pp. 274-285
Author(s):  
H. V. Parmar ◽  
N. K. Gontia

Remote sensing based various land surface and bio-physical variables like Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), surface albedo, transmittance and surface emissivity are useful for the estimation of spatio-temporal variations in evapotranspiration (ET) using Surface Energy Balance Algorithm for Land (SEBAL) method. These variables were estimated under the present study for Ozat-II canal command in Junagadh district, Gujarat, India, using Landsat-7 and Landsat-8 images of summer season of years 2014 and 2015. The derived parameters were used in SEBAL to estimate the Actual Evapotranspiration (AET) of groundnut and sesame crops. The lower values NDVI observed during initial (March) and end (May) stages of crop growth indicated low vegetation cover during these periods. With full canopy coverage of the crops, higher value of NDVI (0.90) was observed during the mid-crop growth stage. The remote sensing-based LST was lower for agricultural areas and the area near banks of the canal and Ozat River, while higher surface temperatures were observed for rural settlements, road and areas with exposed dry soil. The maximum surface temperatures in the cropland were observed as 311.0 K during March 25, 2014 and 315.8 K during May 31, 2015. The AET of summer groundnut increased from 3.75 to 7.38 mm.day-1, and then decreased to 3.99 mm.day-1 towards the end stage of crop growth. The daily AET of summer sesame ranged from 1.06 to 7.72 mm.day-1 over different crop growth stages. The seasonal AET of groundnut and sesame worked out to 358.19 mm and 346.31 mm, respectively. The estimated AET would be helpful to schedule irrigation in the large canal command.


2020 ◽  
Author(s):  
Matthew Garcia

Landsat has a history of use in the diagnosis of land surface phenology, vegetation disturbance, and their impacts on numerous forest biological processes. Studies have connected remote sensing-based phenology to surface climatological patterns, often using average temperatures and derived growing degree day accumulations. I present a detailed examination of remotely sensed forest phenology in the region of western Lake Superior, USA, based on a comprehensive climatological assessment and 1984-2013 Landsat imagery. I use this climatology to explain both the mean annual land surface phenological cycle and its interannual variability in temperate mixed forests. I assess long-term climatological means, trends, and interannual variability for the study period using available weather station data, focusing on numerous basic and derived climate indicators: seasonal and annual temperature and precipitation, the traditionally defined frost-free growing season, and a newly defined metric of the climatological growing season: the warm-season plateau in accumulated chilling days. Results indicate +0.56°C regional warming during the 30-year study period, with cooler springs (–1.26°C) and significant autumn warming (+1.54°C). The duration of the climatological growing season has increased +0.27 days/y, extending primarily into autumn. Summer precipitation in my study area declined by an average –0.34 cm/y, potentially leading to moisture stress that can impair vegetation carbon uptake rates and can render the forest more vulnerable to disturbance. Many changes in temperature, precipitation, and climatological growing season are most prominent in locations where Lake Superior exerts a strong hydroclimatological influence, especially the Minnesota shoreline and in forest areas downwind (southeast) of the lake. I then develop and demonstrate a novel phenoclimatological modeling method, applied over five Landsat footprints across my study area, that combines (1) diagnosis of the mean phenological cycle from remote sensing observations with (2) a partial-least-squares regression (PLSR) approach to modeling vegetation index residuals using these numerous meteorological and climatological observations. While the mean phenology often used to inform land surface models in meteorological and climate modeling systems may explain 50-70% of the observed phenological variability, this mixed modeling approach can explain more than 90% of the variability in phenological observations based on long-term Landsat records for this region.


2021 ◽  
Author(s):  
Haikuan Feng ◽  
Huilin Tao ◽  
Chunjiang Zhao ◽  
Zhenhai Li ◽  
Guijun Yang

Abstract Background: Although crop-growth monitoring is important for agricultural managers, it has always been a difficult research topic. However, unnamed aerial vehicles (UAVs) equipped with RGB and hyperspectral cameras can now acquire high-resolution remote-sensing images, which facilitates and accelerates such monitoring. Results: To explore the effect of monitoring a single crop-growth indicator and multiple indicators, this study combines six growth indicators (plant nitrogen content, above-ground biomass, plant water content, chlorophyll, leaf area index, and plant height) into a new comprehensive growth index (CGI). We investigate the performance of RGB imagery and hyperspectral data for monitoring crop growth based on multi-time estimation of the CGI. The CGI is estimated from the vegetation indices based on UAV hyperspectral data treated by linear, nonlinear, and multiple linear regression (MLR), partial least squares (PLSR), and random forest (RF). The results show that (1) the RGB-imagery indices red reflectance (r), the excess-red index(EXR), the vegetation atmospherically resistant index(VARI), and the modified green-red vegetation index(MGRVI) , as well as the spectral indices consisting of the linear combination index (LCI), the modified simple ratio index(MSR), the simple ratio vegetation index(SR), and the normalized difference vegetation index (NDVI)are more strongly correlated with the CGI than a single growth-monitoring indicator (2) The CGI estimation model is constructed by comparing a single RGB-imagery index and a spectral index, and the optimal RGB-imagery index corresponding to each of the four growth stage in order is r, r, r, EXR; the optimal spectral index is LCI for all four growth stages. (3) The MLR, PLSR, and RF methods are used to estimate the CGI. The MLR method produces the best estimates. (4) Finally, the CGI is more accurately estimated using the UAV hyperspectral indices than using the RGB-image indices.Conclusions: UAVs carrying RGB cameras and hyperspectral cameras have high inversion CGI accuracy and can judge the overall growth of wheat can provide a reference for monitoring the growth of wheat.


2021 ◽  
Vol 13 (5) ◽  
pp. 846
Author(s):  
Carole Planque ◽  
Richard Lucas ◽  
Suvarna Punalekar ◽  
Sebastien Chognard ◽  
Clive Hurford ◽  
...  

National-level mapping of crop types is important to monitor food security, understand environmental conditions, inform optimal use of the landscape, and contribute to agricultural policy. Countries or economic regions currently and increasingly use satellite sensor data for classifying crops over large areas. However, most methods have been based on machine learning algorithms, with these often requiring large training datasets that are not always available and may be costly to produce or collect. Focusing on Wales (United Kingdom), the research demonstrates how the knowledge that the agricultural community has gathered together over past decades can be used to develop algorithms for mapping different crop types. Specifically, we aimed to develop an alternative method for consistent and accurate crop type mapping where cloud cover is quite persistent and without the need for extensive in situ/ground datasets. The classification approach is parcel-based and informed by concomitant analysis of knowledge-based crop growth stages and Sentinel-1 C-band SAR time series. For 2018, crop type classifications were generated nationally for Wales, with regional overall accuracies ranging between 85.8% and 90.6%. The method was particularly successful in distinguishing barley from wheat, which is a major source of error in other crop products available for Wales. This study demonstrates that crops can be accurately identified and mapped across a large area (i.e., Wales) using Sentinel-1 C-band data and by capitalizing on knowledge of crop growth stages. The developed algorithm is flexible and, compared to the other methods that allow crop mapping in Wales, the approach provided more consistent discrimination and lower variability in accuracies between classes and regions.


2019 ◽  
Vol 11 (12) ◽  
pp. 1398 ◽  
Author(s):  
Xuanlong Ma ◽  
Alfredo Huete ◽  
Ngoc Nguyen Tran

Remote sensing of phenology usually works at the regional and global scales, which imposes considerable variations in the solar zenith angle (SZA) across space and time. Variations in SZA alters the shape and profile of the surface reflectance and vegetation index (VI) time series, but this effect on remote-sensing-derived vegetation phenology has not been adequately evaluated. The objective of this study is to understand the behaviour of VIs response to SZA, and to further improve the interpretation of satellite observed vegetation dynamics, across space and time. In this study, the sensitivity of two widely used VIs—the normalised difference vegetation index (NDVI) and the enhanced vegetation index (EVI)—to SZA was investigated at four northern Australian savanna sites, over a latitudinal distance of 9.8° (~1100 km). Complete time series of surface reflectances, as acquired with different SZA configurations, were simulated using Bidirectional Reflectance Distribution Function (BRDF) parameters provided by MODerate Resolution Imaging Spectroradiometer (MODIS). The sun-angle dependency of the four phenological transition dates were assessed. Results showed that while NDVI was very sensitive to SZA, such sensitivity was nearly absent for EVI. A negative correlation was also observed between NDVI sensitivity to SZA and vegetation cover, with sensitivity declining to the same level as EVI when vegetation cover was high. Different sun-angle configurations resulted in considerable variations in the shape and magnitude of the phenological profiles. The sensitivity of VIs to SZA was generally greater during the dry season (with only active trees present) than in the wet season (with both active trees and grasses), thus, the sun-angle effect on VIs was phenophase-dependent. The sun-angle effect on NDVI time series resulted in considerable differences in the phenological metrics across different sun-angle configurations. Across four sites, the sun-angle effect caused 15.5 days, 21.6 days, and 20.5 days differences in the start, peak, and the end of the growing season derived from NDVI time series, with seasonally varying SZA at local solar noon, as compared to those metrics derived from NDVI time series with fixed SZA. In comparison, those differences in the start, peak, and end of the growing season for EVI were significantly smaller, with only 4.8 days, 4.9 days, and 3 days, respectively. Our results suggest the potential importance of considering the seasonal SZA effect on VI time series prior to the retrieval of phenological metrics.


2020 ◽  
Vol 12 (8) ◽  
pp. 1339 ◽  
Author(s):  
Xuanlong Ma ◽  
Alfredo Huete ◽  
Ngoc Tran ◽  
Jian Bi ◽  
Sicong Gao ◽  
...  

Satellite remote sensing of vegetation at regional to global scales is undertaken at considerable variations in solar zenith angle (SZA) across space and time, yet the extent to which these SZA variations matter for the retrieval of phenology remains largely unknown. Here we examined the effect of seasonal and spatial variations in SZA on retrieving vegetation phenology from time series of the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) across a study area in southeastern Australia encompassing forest, woodland, and grassland sites. The vegetation indices (VI) data span two years and are from the Advanced Himawari Imager (AHI), which is onboard the Japanese Himawari-8 geostationary satellite. The semi-empirical RossThick-LiSparse-Reciprocal (RTLSR) bidirectional reflectance distribution function (BRDF) model was inverted for each spectral band on a daily basis using 10-minute reflectances acquired by H-8 AHI at different sun-view geometries for each site. The inverted RTLSR model was then used to forward calculate surface reflectance at three constant SZAs (20°, 40°, 60°) and one seasonally varying SZA (local solar noon), all normalised to nadir view. Time series of NDVI and EVI adjusted to different SZAs at nadir view were then computed, from which phenological metrics such as start and end of growing season were retrieved. Results showed that NDVI sensitivity to SZA was on average nearly five times greater than EVI sensitivity. VI sensitivity to SZA also varied among sites (biome types) and phenological stages, with NDVI sensitivity being higher during the minimum greenness period than during the peak greenness period. Seasonal SZA variations altered the temporal profiles of both NDVI and EVI, with more pronounced differences in magnitude among NDVI time series normalised to different SZAs. When using VI time series that allowed SZA to vary at local solar noon, the uncertainties in estimating start, peak, end, and length of growing season introduced by local solar noon varying SZA VI time series, were 7.5, 3.7, 6.5, and 11.3 days for NDVI, and 10.4, 11.9, 6.5, and 8.4 days for EVI respectively, compared to VI time series normalised to a constant SZA. Furthermore, the stronger SZA dependency of NDVI compared with EVI, resulted in up to two times higher uncertainty in estimating annual integrated VI, a commonly used remote-sensing proxy for vegetation productivity. Since commonly used satellite products are not generally normalised to a constant sun-angle across space and time, future studies to assess the sun-angle effects on satellite applications in agriculture, ecology, environment, and carbon science are urgently needed. Measurements taken by new-generation geostationary (GEO) satellites offer an important opportunity to refine this assessment at finer temporal scales. In addition, studies are needed to evaluate the suitability of different BRDF models for normalising sun-angle across a broad spectrum of vegetation structure, phenological stages and geographic locations. Only through continuous investigations on how sun-angle variations affect spatiotemporal vegetation dynamics and what is the best strategy to deal with it, can we achieve a more quantitative remote sensing of true signals of vegetation change across the entire globe and through time.


2020 ◽  
Vol 12 (13) ◽  
pp. 2140 ◽  
Author(s):  
Tianwei Ren ◽  
Zhe Liu ◽  
Lin Zhang ◽  
Diyou Liu ◽  
Xiaojie Xi ◽  
...  

Accurate and timely access to the production area of crop seeds allows the seed market and secure seed supply to be monitored. Seed maize and common maize production fields typically share similar phenological development profiles with differences in the planting patterns, which makes it challenging to separate these fields from decametric-resolution satellite images. In this research, we proposed a method to identify seed maize production fields as early as possible in the growing season using a time series of remote sensing images in the Liangzhou district of Gansu province, China. We collected Sentinel-2 and GaoFen-1 (GF-1) images captured from March to September. The feature space for classification consists of four original bands, namely red, green, blue, and near-infrared (nir), and eight vegetation indexes. We analyzed the timeliness of seed maize identification using Sentinel-2 time series of different time spans and identified the earliest time frame for reasonable classification accuracy. Then, the earliest time series that met the requirements of regulatory accuracy were compared and analyzed. Four machine/deep learning algorithms were tested, including K-nearest neighbor (KNN), support vector classification (SVC), random forest (RF), and long short-term memory (LSTM). The results showed that using Sentinel-2 images from March to June, the RF and LSTM algorithms achieve over 88% accuracy, with the LSTM performing the best (90%). In contrast, the accuracy of KNN and SVC was between 82% and 86%. At the end of June, seed maize mapping can be carried out in the experimental area, and the precision can meet the basic requirements of monitoring for the seed industry. The classification using GF-1 images were less accurate and reliable; the accuracy was 85% using images from March to June. To achieve near real-time identification of seed maize fields early in the growing season, we adopted an automated sample generation approach for the current season using only historical samples based on clustering analysis. The classification accuracy using new samples extracted from historical mapping reached 74% by the end of the season (September) and 63% by the end of July. This research provides important insights into the classification of crop fields cultivated with the same crop but different planting patterns using remote sensing images. The approach proposed by this study enables near-real time identification of seed maize production fields within the growing season, which could effectively support large-scale monitoring of the seed supply industry.


Sign in / Sign up

Export Citation Format

Share Document