scholarly journals Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Haoze Yang ◽  
Luis Gutiérrez-Arzaluz ◽  
Partha Maity ◽  
Mahmoud A. Abdulhamid ◽  
Jun Yin ◽  
...  

Although cesium lead halide perovskite (CsPbX3, X = Cl, Br, or I) nanocrystals (PNCs) have been rapidly developed for multiple optoelectronic applications due to their outstanding optical and transport properties, their device fabrication and commercialization have been limited by their low structural stability, especially under environmental conditions. In this work, a new approach has been developed to protect the surface of these nanocrystals, which results in enhanced chemical stability and optical properties. This method is based on the encapsulation of CsPbX3 NCs into a polyimide with intrinsic microporosity (PIM-PI), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride reacted with 2,4,6-trimethyl-m-phenylenediamine (6FDA-TrMPD). The presence of 6FDA-TrMPD as a protective layer can efficiently isolate NCs from an air environment and subsequently enhance their optical and photoluminescence stability. More specifically, comparing NCs treated with a polymer to as-synthesized nanocrystals after 168 h, we observe that the PL intensity decreased by 70% and 20% for the NCs before and after polymer treatment. In addition, the PNC film with a polymer shows a much longer excited-state lifetime than the as-synthesized nanocrystals, indicating that the surface trap states are significantly reduced in the treated PNCs. The enhancement in chemical and air stability, as well as optical behavior, will further improve the performance of CsPbBr3 PNCs yielding promising optical devices and paving the way for their production and implementation at a large scale.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 209
Author(s):  
Gopi Chandra Adhikari ◽  
Saroj Thapa ◽  
Yang Yue ◽  
Hongyang Zhu ◽  
Peifen Zhu

All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies.



2016 ◽  
Vol 113 (8) ◽  
pp. 1993-1998 ◽  
Author(s):  
Samuel W. Eaton ◽  
Minliang Lai ◽  
Natalie A. Gibson ◽  
Andrew B. Wong ◽  
Letian Dou ◽  
...  

The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.



Science ◽  
2021 ◽  
Vol 371 (6532) ◽  
pp. eabd8014 ◽  
Author(s):  
Sandheep Ravishankar ◽  
Thomas Unold ◽  
Thomas Kirchartz

Ni et al. (Research Articles, 20 March 2020, p. 1352) report bulk trap densities of 1011 cm–3 and an increase in interfacial trap densities by one to four orders of magnitude from drive-level capacitance profiling of lead halide perovskites. From electrostatic arguments, we show that the results are not trap densities but are a consequence of the geometrical capacitance and charge injection into the perovskite layer.





Author(s):  
Sarah Wieghold ◽  
Alexander S. Bieber ◽  
Zachary A. VanOrman ◽  
Juan-Pablo Correa-Baena ◽  
Lea Nienhaus


2016 ◽  
Vol 1 (4) ◽  
pp. 726-730 ◽  
Author(s):  
Silvia G. Motti ◽  
Marina Gandini ◽  
Alex J. Barker ◽  
James M. Ball ◽  
Ajay Ram Srimath Kandada ◽  
...  


2018 ◽  
Vol 51 (9) ◽  
pp. 095501 ◽  
Author(s):  
Changfeng Han ◽  
Kai Wang ◽  
Xixiang Zhu ◽  
Haomiao Yu ◽  
Xiaojuan Sun ◽  
...  




Author(s):  
Daniel J Freppon ◽  
Long Men ◽  
Ujjal Bhattacharjee ◽  
Bryan A Rosales ◽  
Feng Zhu ◽  
...  

An optimized synthetic procedure for preparing photostable nanocrystalline methylammonium lead halide materials is reported. The procedure was developed by adjusting the lead halide to methylammonium/octylammonium halide precursor ratio. At a high precursor ratio (1:3), a blue-shifted photoinduced luminescence peak is measured at 642 nm for CH3NH3PbI3 with 0.01 to 12 mJ pulsed-laser irradiation. The appearance of this peak is reversible over 300 min upon blocking the irradiation. In order to determine if the peak is the result of a phase change, in situ x-ray diffraction measurements were performed. No phase change was measured with an irradiance that causes the appearance of the photoinduced luminescence peak. Luminescence microscpectroscopy measurements showed that the use of a lower precursor ratio (1:1.5) produces CH3NH3PbI3 and CH3NH3PbBr3 perovskites that are stable over 4 min of illumination. Given the lack of a measured phase change, and the dependence on the precursor ratio, the photoinduced luminesce peak may derive from surface trap states. The enhanced photostability of the resulting perovskite nanocrystals produced with the optimized synthetic procedure supports their use in stable optoelectronic devices.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jan Pospisil ◽  
Oldrich Zmeskal ◽  
Stanislav Nespurek ◽  
Jozef Krajcovic ◽  
Martin Weiter ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document