Exploration history and place names of northern East Greenland

1969 ◽  
Vol 21 ◽  
pp. 1-368 ◽  
Author(s):  
Anthony K. Higgins

The first recorded landing by Europeans on the coast of northern East Greenland (north of 69°N) was that of William Scoresby Jr., a British whaler, in 1822. This volume includes a chronological summary of the pioneer 19th century exploration voyages made by British, Danish, Norwegian, Swedish, French and German expeditions – all of whom reported that the region had previously been occupied by the Inuit or Eskimo; also included are brief outlines of the increasing number of government and privately sponsored expeditions throughout the 20th century, whose objectives included cartography, geology, zoology, botany, trapping and the ascent of the highest mountain summits. In 1934 the Place Name Committee for Greenland was established, the tasks of which included a review of all place names hitherto recorded on published maps of Greenland, their formal adoption in danicised form, and the approval or rejection of new name proposals. In northern East Greenland, by far the largest numbers of new place names were those proposed by scientists associated with Lauge Koch's geological expeditions that lasted from 1926 until 1958. This volume records the location and origin of more than 3000 officially approved place names as well as about 2650 unapproved names. The author's interest in the exploration history and place names of northern East Greenland started in 1968, when the Geological Survey of Greenland initiated a major five-year geological mapping programme in the Scoresby Sund region. Systematic compilation of names began about 1970, initially with the names given by William Scoresby Jr., and subsequently broadened in scope to include the names proposed by all expeditions to northern East Greenland. The author has participated in 16 summer mapping expeditions with the Survey to northern East Greenland. Publication of this volume represents the culmination of a lifetime working in the Arctic.

Author(s):  
Kai Sørensen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Sørensen, K. (2001). The year in focus, 2000. Geology of Greenland Survey Bulletin, 189, 7-10. https://doi.org/10.34194/ggub.v189.5148 _______________ The year 2000 was unusual in that it lacked major field activity directly involved with the systematic geological mapping of Greenland. However, field activities were again many and varied, including a successful highresolution seismic survey offshore central West Greenland, and a joint Geological Survey of Denmark and Greenland (GEUS) – Danish Lithosphere Centre (DLC) project centred on Kangerlussuaq in southern East Greenland. Of the Survey’s 354 personnel, 93 were allocated to Greenland-related activities (Table 1). The Greenland level of activity in 2000, both in Copenhagen and in the field, thus compared favourably with that of 1999.


1991 ◽  
Vol 152 ◽  
pp. 30-31
Author(s):  
J.C Escher

The publication of the 1:500 000 Skjoldungen map sheet (Escher, 1990; Fig. 1) marks the completion of the Geological Survey of Greenland's (GGU's) reconnaissance mapping activities in South-East Greenland. A descriptive text to the map is under preparation. All of South-East Greenland between Kap Farvel (59° 00´N) and Mesters Vig (72° 00´N) is now covered by sheets of the 1:500 000 geological map series of Greenland. Five sheets in the series (nos 5,6,9, 10 and 11) remain to be published (Fig. 1); the Thule map sheet (sheet 5) will be printed in the course of 1991, and sheet 10 is under compilation. The presentation of the Skjoldungen map is somewhat different from that of the other 1:500 000 maps inthe series. In addition to traditional lithological information, an effort has been made to show the tectonic/metamorphic development of the region during the Archaean and Proterozoic.


1993 ◽  
Vol 30 (2) ◽  
pp. 243-260 ◽  
Author(s):  
D. J. Teskey ◽  
P. J. Hood ◽  
L. W. Morley ◽  
R. A. Gibb ◽  
P. Sawatzky ◽  
...  

The aeromagnetic survey operations of the Geological Survey of Canada (GSC) began in 1946, utilizing a magnetometer in a bird system towed by a Royal Canadian Air Force Anson. Subsequent early operations were carried out by the GSC-operated Canso and Aero Commander aircraft. In 1961, the GSC in-house survey team formed the nucleus of a contract surveys group set up to monitor a new program established to complete the aeromagnetic mapping of the Canadian Shield in 12 years on a cost-sharing basis with the provinces. Today, surveys are carried out under contract by light twin-engine aircraft such as the Cessna 404 and even, in some cases, single-engine aircraft that utilize compact computer-controlled data acquisition and navigation systems and inboard magnetometer installations. Early systems were capable of resolution of only a few nanoteslas (nT) compared to the current standard of 0.1 nT or less, and flight path positioning with 35 mm film and photomosaics or topographical maps was extremely challenging. Despite these limitations, the careful selection of survey parameters and attention given to quality control have resulted in a world-class aeromagnetic data base that has contributed significantly to regional geological mapping and to mineral and oil exploration in Canada. Concurrently, the GSC carried out research programs into the development of instrumentation and into processing, interpretation, and enhancement techniques. In 1968, the GSC acquired its own platform, a Beechcraft B80 Queenair, which was used to develop high-sensitivity techniques, and an inboard gradiometer system, which was transferred to private industry in 1983. The GSC, in cooperation with the Flight Research Laboratory of the National Research Council of Canada, has also conducted a program of research into magnetometry and navigation combined with aeromagnetic studies of the Arctic since 1962.


Author(s):  
Stanisław WOŁKOWICZ

The paper presents the development of the geological mapping of in the Sudetes and Lower Silesia, starting from issuing in 1791 the first geological map of the Karkonosze Mountains, developed by J. Jirasek and issued in 1791, through maps of L. von Buch, C. von Raumer and A. Kaluža from the beginning of the 19th century, through and numerous editions of atlases published throughout the 19th century, ending with the detailed maps produced at the scale of 1 : 25,000 in at the beginning of the 20th century. The latter maps were the basis for the geological maps prepared after 1945.


1966 ◽  
Vol 11 ◽  
pp. 54-57
Author(s):  
D Bridgwater

As a first stage in planning a regional mapping programme on the south-east coast of Greenland from Scoresby Sund to Kap Farvel, the available material from previous expeditions has been examined and a provisional geological map is being compiled. A programme of isotopic age determination has been started in collaboration with F. J. Fitch (London University) and J. A. Miller (Cambridge University) in order to help localise areas in which to concentrate future detailed geological mapping. The Geological Survey of Greenland will be very pleased to receive information gathered on recent expeditions to this coast which may be of help in planning and which could prevent a senseless dupliaation of effort.


1969 ◽  
Vol 26 ◽  
pp. 61-64 ◽  
Author(s):  
Michael B.W. Fyhn ◽  
Thorkild M. Rasmussen ◽  
Trine Dahl-Jensen ◽  
Willy L. Weng ◽  
Jørgen A. Bojesen-Koefoed ◽  
...  

The East Greenland margin consists of a number of sedimentary basins, platforms and structural highs (Figs 1, 2). Due to the challenges imposed by the Arctic climate, the region is in an early stage of exploration, and knowledge of the geology and petroleum potential of the margin is limited. However, the significant prospectivity of the conjugated European North Atlantic margin and the nature of the North- East Greenland onshore geology prompt for future offshore exploration. The US Geological Survey thus highlighted the North-East Greenland margin in their latest assessment of the Arctic region (Gautier et al. 2011). With a mean estimate of undiscovered recoverable oil, gas, and natural gas liquids of approximately 31 billion barrels of oil equivalents, the US Geological Survey ranked the North-East Greenland margin fourth in the entire Arctic region, only superseded by known producing petroleum provinces.


Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Karol Faehnrich ◽  
William C. McClelland ◽  
Maurice Colpron ◽  
Charlotte L. Nutt ◽  
Rebecca S. Miller ◽  
...  

Abstract The origin and displacement history of terranes emplaced along the northern margin of North America remain contentious. One of these terranes is the North Slope subterrane of the Arctic Alaska-Chukotka microplate, which is separated from the northwestern margin of Laurentia (Yukon block) by the Porcupine Shear Zone of Alaska and Yukon. Here, we present new field observations, geological mapping, detrital zircon U-Pb geochronology, and sedimentary/igneous geochemistry to elucidate the stratigraphic architecture of deformed pre-Mississippian rocks exposed within the Porcupine Shear Zone, which we distinguish herein as the newly defined Ch’oodeenjìk succession. The oldest rocks in the Ch’oodeenjìk succession consist of siliciclastic strata of the Lahchah and Sunaghun formations (new names), which yield detrital zircon U-Pb age populations of ca. 1050-1250, 1350-1450, 1600-1650, and 2500-2800 Ma (n =800). This succession is overlain by chert-bearing dolostone and limestone of the Caribou Bar formation (new name) that contains vase-shaped microfossils and yields carbonate carbon (δ13Ccarb) and strontium (87Sr/86Sr) isotopic data that range from ca. -3‰ to +3‰ and 0.70636 to 0.70714, respectively. These data suggest that Lahchah, Sunaghun, and Caribou Bar formations are late Tonian in age. These Neoproterozoic rocks are intruded by Late Devonian (Frasnian-Famennian) felsic plutons and mafic dikes, one of which yielded a sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) U-Pb age of 380 ± 4 Ma. Neoproterozoic strata of the Ch’oodeenjìk succession are also unconformably overlain by Upper Devonian-Carboniferous (?) siliciclastic rocks of the Darcy Creek formation (new name), which yields detrital zircon populations of ca. 365–385, 420-470 and 625-835 Ma, in addition to Proterozoic age populations similar to the underlying Tonian strata. Together, these new stratigraphic, geochronological, geochemical, and micropaleontological data indicate that pre-Mississippian rocks exposed within the Porcupine Shear Zone most likely represent a peri-Laurentian crustal fragment that differs from the adjacent Yukon block and North Slope subterrane; thus, the Porcupine Shear Zone represents a fundamental tectonic boundary separating autochthonous Laurentia from various accreted peri-Laurentian crustal fragments.


1970 ◽  
pp. 47-55
Author(s):  
Sarah Limorté

Levantine immigration to Chile started during the last quarter of the 19th century. This immigration, almost exclusively male at the outset, changed at the beginning of the 20th century when women started following their fathers, brothers, and husbands to the New World. Defining the role and status of the Arab woman within her community in Chile has never before been tackled in a detailed study. This article attempts to broach the subject by looking at Arabic newspapers published in Chile between 1912 and the end of the 1920s. A thematic analysis of articles dealing with the question of women or written by women, appearing in publications such as Al-Murshid, Asch-Schabibat, Al-Watan, and Oriente, will be discussed.


Sign in / Sign up

Export Citation Format

Share Document