scholarly journals Measurements of firn density in the lower accumulation area of the Greenland ice sheet: EPOCH 1992

1993 ◽  
Vol 159 ◽  
pp. 62-65
Author(s):  
R.J Braithwaite ◽  
M Laternser

Groups from several countries are studying Greenland glaciers in connection with the 'greenhouse effect' (Braithwaite et al., 1992a). In particular, GGU is the Danish partner in a IO-nation two-year project (March 1991 to February 1993) on causes and effects of sea level changes which is funded by the European Community through the European Programme on Climatology and Natural Hazards (EPOCH). As its contribution to EPOCH, GGU is studying the effects of meltwater refreezing in the lower accumulation area of the Greenland ice sheet which may reduce, or at least delay, the expected sea level rise under warmer climate. Work done under EPOCH in 1991 was described by Braithwaite et al. (1992b) while the present note describes the most important results of the 1992 field work.

2016 ◽  
Vol 2 (5) ◽  
pp. e1501538 ◽  
Author(s):  
Aurélien Mordret ◽  
T. Dylan Mikesell ◽  
Christopher Harig ◽  
Bradley P. Lipovsky ◽  
Germán A. Prieto

The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth’s crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.


1993 ◽  
Vol 159 ◽  
pp. 109-114
Author(s):  
R.J Braithwaite

Firn temperatures and meltwater refreezing are studied in the lower accumulation area of the Greenland ice sheet as part of an international project on sea level changes. In the study area, 1440–1620 m a.s.l., meltwater penetrates several metres into the firn and refreezes, warming the firn by 5–7°C compared with annual air temperatures. This firn warming is closely related to surface melt which can be estimated by several methods. A relatively high degree-day factor is needed to account for the melt rates found.


2020 ◽  
Author(s):  
Martin Horwath ◽  

<p>Studies of the sea-level budget are a means of assessing our ability to quantify and understand sea-level changes and their causes. ESA's Climate Change Initiative (CCI) projects include Sea Level CCI, Greenland Ice Sheet CCI, Antarctic Ice Sheet CCI, Glaciers CCI and the Sea Surface Temperature CCI, all addressing Essential Climate Variables (ECVs) related to sea level. The cross-ECV project CCI Sea Level Budget Closure used different products for the sea level and its components, based on the above CCI projects in conjunction with in situ data for ocean thermal expansion (e.g., Argo), GRACE-based assessments of ocean mass change, land water and land ice mass change, and model-based data for glaciers and land hydrology. The involvement of the authors of the individual data products facilitated consistency and enabled a unified treatment of uncertainties and their propagation to the overall budget closure. </p><p>After conclusion of the project, the developed data products are now available for science users and the public. This poster summarizes the project results with a focus on presenting these data products. They include time series (for the periods 1993-2016 and 2003-2016) of global mean sea level changes and global mean sea level contributions from the steric component, from the ocean mass component and from the individual mass contributions by glaciers, the Greenland Ice Sheet, the Antarctic Ice Sheet and changes in land water storage. They are designed and documented in the consistent framework of ESA SLBC_cci and include uncertainty measures per datum. Additional more comprehensive information, such as geographic grids underlying the global means, are available for some components.</p><p>For the long-term trend, the budget is closed within uncertainties on the order of 0.3 mm/yr (1 sigma). Moreover, the budget is also closed within uncertainties for interannual variations.</p>


2020 ◽  
Author(s):  
Trine S. Dahl-Jensen ◽  
Shfaqat Abbas Khan ◽  
Simon D.P. Williams ◽  
Ole B. Andersen ◽  
Carsten A. Ludwigsen

<p>Recent studies show that under the right conditions relative sea level can be measured using GNSS interferometric reflectometry (GNSS-IR). We test the possibility of using an existing GNET GPS station in Thule, Greenland, to measure inter annual changes in sea level by comparing sea level measurements from GNSS-IR with tide gauge observations and satellite altimetry data. GNET is a network of 56 permanent GPS stations positioned on the bedrock around the edge fo the Greenland ice sheet with the main purpose of monitoring ice mass changes. Currently, Thule is the only location in Greenland where we have both a tide gauge and a GPS station that is suitable for sea level measurement covering the same time period for more than a couple of years. If successful a number of other GPS stations are also expected to be suitable for GNSS-IR measurements of sea level. However, they lack the tide gauge station for testing.<br>We compare the measured sea level with uplift measured using the GPS and modeled from height changes of the Greenland ice sheet as well as sea surface temperatures and modeled sea level changes from gravimetry, in order to investigate the origin of sea level changes in the region.  <br> </p>


2017 ◽  
Vol 30 (6) ◽  
pp. 2011-2028 ◽  
Author(s):  
B. Meyssignac ◽  
X. Fettweis ◽  
R. Chevrier ◽  
G. Spada

Abstract Surface mass balance (SMB) variations of the Greenland ice sheet (GrIS) have been identified as an important contributor to contemporary and projected global mean sea level variations, but their impact on the regional sea level change pattern is still poorly known. This study proposes estimates of GrIS SMB over 1900–2100 based on the output of 32 atmosphere–ocean general circulation models and Earth system models involved in phase 5 of the Climate Model Intercomparison Project (CMIP5). It is based on a downscaling technique calibrated against the Modèle Atmosphérique Régional (MAR) regional climate model and it provides an ensemble of 32 Greenland SMB estimates for each Greenland major drainage basin. Because the GrIS SMB does not respond uniformly to greenhouse gas (GHG) emissions, the southern part of the GrIS is more sensitive to climate warming. This study shows that this part should be in imbalance in the twenty-first century sooner than the northern part. This regional variability significantly affects the associated relative sea level pattern over the entire ocean and particularly along the U.S. East Coast and the northern coast of Europe. This highlights the necessity of taking into account GrIS regional SMB changes to evaluate accurately relative sea level changes in future projections.


2011 ◽  
Vol 30 (27-28) ◽  
pp. 3748-3768 ◽  
Author(s):  
Antony J. Long ◽  
Sarah A. Woodroffe ◽  
David H. Roberts ◽  
Sue Dawson

Author(s):  
Patrick J. Applegate ◽  
K. Keller

Engineering the climate through albedo modification (AM) could slow, but probably would not stop, melting of the Greenland Ice Sheet. Albedo modification is a technology that could reduce surface air temperatures through putting reflective particles into the upper atmosphere. AM has never been tested, but it might reduce surface air temperatures faster and more cheaply than reducing greenhouse gas emissions. Some scientists claim that AM would also prevent or reverse sea-level rise. But, are these claims true? The Greenland Ice Sheet will melt faster at higher temperatures, adding to sea-level rise. However, it's not clear that reducing temperatures through AM will stop or reverse sea-level rise due to Greenland Ice Sheet melting. We used a computer model of the Greenland Ice Sheet to examine its contributions to future sea level rise, with and without AM. Our results show that AM would probably reduce the rate of sea-level rise from the Greenland Ice Sheet. However, sea-level rise would likely continue even with AM, and the ice sheet would not regrow quickly. Albedo modification might buy time to prepare for sea-level rise, but problems could arise if policymakers assume that AM will stop sea-level rise completely.


2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


2015 ◽  
Vol 9 (3) ◽  
pp. 1039-1062 ◽  
Author(s):  
J. J. Fürst ◽  
H. Goelzer ◽  
P. Huybrechts

Abstract. Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000–2010), both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of +1.4 to +16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice–ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, not from ice dynamics.


Sign in / Sign up

Export Citation Format

Share Document