scholarly journals Glacial features of the Børglum Elv region, eastern North Greenland

1975 ◽  
Vol 75 ◽  
pp. 26-28
Author(s):  
R.L Christie

Lauge Koch recognised in 1921 that the Inland Ice had not overwhelmed all of North Greenland during the Glacial Epoch and, although his data were few, he suggested a generalised probable outward extent of the former ice cap (Koch, 1923, fig. 2). The mapping of the outward limit was based on the identification of erratics of rocks unique to parts of the present northern margin of the Inland Ice. Field work by Troelsen (1952) confirmed the existence of the limit in the vicinity of BØrglum Elv. Data collected in 1974 suggest that Koch's line, in the Børglum Elv region at least, was well located, but that the boundary relationships may be complex due to overlapping of limits of ice from the south and the north.

1974 ◽  
Vol 65 ◽  
pp. 18-23
Author(s):  
J.S Peel ◽  
P.R Dawes ◽  
J.C Troelsen

The north-east 'corner' of Greenland is geologically probably the least known region in North Greenland. Various expeditions have visited the coastal parts but geological detail, particularly faunal information, has remained surprisingly scarce. Initial field work by Koch (1923, 1925) and Troelsen (1949a, b, 1950) showed that a Precambrian to Silurian section - unfolded in the south, folded in the north - was unconformably overlain by a Carboniferous to Tertiary section, now referred to as the Wandel Sea basin (Dawes & Soper, 1973).


1974 ◽  
Vol 65 ◽  
pp. 11-13
Author(s):  
W.B.N Berry ◽  
A.J Boucot ◽  
P.R Dawes ◽  
J.S Peel

The precise age of the youngest part of the geosynclinal fill of the North Greenland fold belt has been the subject of important discussion, particularly with regard to the problem of dating the Palaeozoic diastrophism (Kerr, 1967; Dawes, 1971). Since Lauge Koch's field work between 1916 and 1923 it has been known that strata bearing Monograptus priodon were involved in the folding (Koch, 1920), indicating the presence of Silurian of Llandovery-Wenlock age. In addition, Poulsen (1934) identified Cyrtograptus cf. C. multiramus and Monograptus bohemicus in collections made by Koch from unfolded shales on the platform, to the south of the fold belt, which demonstrated that the section included Wenlock and early Ludlow strata.


1979 ◽  
Vol 95 ◽  
pp. 82-85
Author(s):  
J.S Myers ◽  
H Austrheim ◽  
R.C.O Gill ◽  
B.E Gorman ◽  
D.C Rex

Work was carried out from the 80 ton cutter Tycho Brahe using 16 ft inflatable rubber dinghies between 24th July and 31st August 1978. In addition, the Nagssugtoqidian boundary was mapped westwards from Kangerdlugssuatsiaq to the inland ice cap by Bell 204 helicopter and part of the Kialineq region was mapped from a Piper Navajo aircraft (fig. 28). The Nagssugtoqidian boundary was examined on the north shore of Kangerdlugssuatsiaq and a section through the northem part of the Nagssugtoqidian mobile belt was mapped along the shores of the upper part of Sermilik by rubber dinghy. Part of the Angmagssalik charnockite complex was examined in detail around Angmagssalik and Kap Dan. The Tertiary plutonic centres of Kialineq and Kap Gustav Holm were mapped in detail as well as the coastal dyke swarm in these regions, and samples were collected from all the main plutonic units for petrology and isotope studies.


1981 ◽  
Vol 106 ◽  
pp. 69-75
Author(s):  
I Parsons

A series of smal! volcanic centres cut Ordovician turbidites of Formation A in the southem part of Johannes V. Jensen Land between Midtkap and Frigg Fjord (Map 2). Their general location and main rock types were described by Soper et al. (1980) and their nomenclature is adopted here for fig. 22 with the addition of the small pipe B2. A further small intrusion, south-west of Frigg Fjord, was described by Pedersen (1980). The centres lie 5-10 km south of, and parallel to, the important Harder Fjord fault zone (fig. 22) which traverses the southern part of the North Greenland fold belt and shows substantial downthrow to the south (Higgins et al., this report).


1988 ◽  
Vol 137 ◽  
pp. 118-118
Author(s):  
T.P Fletcher ◽  
A.K Higgins ◽  
J.S Peel

The first record of Middle Cambrian faunas of 'Atlantic' affinity from the Franklinian basin sequence of North Greenland was made by Poulsen (1969) who noted that previously described Greenland faunas were of 'Pacific' type. Field work by the Geological Survey of Greenland during the last decade has established that 'Atlantic' faunas are widespread in more outer shelfsequences along the northern coast of North Greenland while the 'Pacific' faunas occur within inner shelfsequences more to the south, near the margin of the Inland Ice. North Greenland preserves both faunas in dose geographical juxtaposition in only slightly tectonised geological settings. Thus, alatest Middle Cambrian trilobite fauna described by Robison (in press) from the Holm Dal Formation in an area some 40 km south of the presently discussed locality (and more inner shelf) includes a mixture of polymeroids characteristic of the Cedaria Zone of North America and agnostoids characteristic of the Lejopyge laevigata Zone of the Swedish standard zonation.


1988 ◽  
Vol 10 ◽  
pp. 221 ◽  
Author(s):  
Wu Xiaoling ◽  
Lonnie G. Thompson

A cooperative glacio-climatological ice-core drilling and analysis program, administered by LIGC and BPRC, has been carried out since 1984. The major objective of this study is to extract from the Dunde ice cap records of the general environmental conditions, which include drought, volcanic activity, moisture sources, glacier net balance and possibly temperature over the last 3000 years. In 1984 a group of 18 Chinese scientists and an American scientist spent 6 weeks on the Dunde ice cap. The central objective of their research was to evaluate the potential of the ice cap to yield a lengthy ice-core climate record. Results of the 1984 field work and 1985 laboratory analysis are submitted here. The Dunde ice cap (38°96′N, 96°24.5′E) is located in the north-eastern section of the Tibet plateau, China. Its length is 10.9 km; the width varies from 2.5 to 7.5 km. The total area of the ice cap is 57 km2. A 16 m core was drilled at the first site, located on a flat part of the ice cap, 5150 m a.s.l. A 10.2 m ice core was drilled at the ice cap summit (5300 m). A series of shallow cores and 2 m pits were excavated at each of the two sites and in the lower section of the ice cap. A mono-pulse radar unit was used to determine ice thickness. The ice thickness ranged between 94 and 167 m, with an average thickness of 140 m. Using a thermistor cable, minimum temperatures of −9.1° and −9.5 °C were measured in the 16 m hole and 10.2 m hole respectively. Microparticle analysis of the ice core from the Dunde ice cap revealed a very high dust content, on average 16 × 105 particles (≥0.63 to ≤16 μ in diameter) per ml of sample, i.e. 3−4 times higher than the microparticle content in the Quelccaya ice cap, Peru, and 100 times higher than in the core from Byrd Station, Antarctica. Oxygen-isotope content ranged between −12 and −14 per mil. Initially it was anticipated that the oxygen-isotope content would produce a more negative value in the Dunde ice cap. More work is required to explain the mechanism controlling δ18o variation in the ice core from the Dunde ice cap. The microparticles, oxygen-isotope content, conductivity, and tritium measurements, together with stratigraphy, temperature and density, are presented in the figures. The 40 year net-balance record reconstructed from the ice-core and oxygen-isotope profile is in good agreement with data from precipitation and major temperature trends obtained for the last 30 years from Delingha meteorological station, which is located 160 km south-east of the ice cap.


1954 ◽  
Vol 2 (16) ◽  
pp. 423-428

AbstractMorsárjökull is a small outlet glacier of Vatnajökull, Iceland. Two outlet streams from the ice cap unite at the foot of a precipitous step and carry a well-developed medial moraine; the north-west glacier stream is fed by a steep ice fall, the south-eastern one has been fed only by avalanches since 1938.The movement of the glacier was measured and showed that the alternate dark and light ogives were one year’s movement apart. Their characteristics are described and tentative suggestions concerning their mode of origin are proposed.


Archaeologia ◽  
1969 ◽  
Vol 102 ◽  
pp. 1-81 ◽  
Author(s):  
George C. Boon

SummaryThe excavations were undertaken by the Silchester Excavation Committee supported by donations from public and private bodies and from individuals and by permission of the Duke of Wellington, K.G., F.S.A. Their purpose was the investigation of (a) a previously unsuspected polygonal enclosure of about 85 acres, here named the Inner Earthwork, which lay partly inside and partly outside the line of the familiar Roman town wall; and (b) a western extension to the known line of the Outer Earthwork, which increased the size of this enclosure from about 213 to 233 acres. With the assistance of the Ordnance Survey, the aerial traces of these earthworks, first observed and recorded by Dr. J. K. St. Joseph, F.S.A., were confirmed and extended by field-work and excavation, and have been planned as appears on pl. I.The excavations showed that the Inner Earthwork was a defence of Gaulish ‘Fécamp’ type, and that it was erected, on the south, over an area of late pre-Roman occupation, the first clearly identified at Calleva Atrebatum, but one with strong ‘Catuvellaunian’ influences in its pottery-series. It is claimed that the Inner Earthwork was constructed by the client King Cogidubnus in or shortly after A.D. 43–4, as the defence of this, the most important settlement in the north-west of his dominions. It is further suggested that the Inner Earthwork was replaced by the Outer Earthwork also during the reign of Cogidubnus.The excursus attempts to collate with the results of excavation the earlier discoveries of pre-Conquest material. The total evidence is finally related to the Belgico-Roman topography of Silchester and its neighbourhood, within the historical framework of the century and a half which separated the arrival of the earliest Belgic immigrants in the region from the death of Cogidubnus and the consequent emergence of the Roman Civitas Atrebatum.


1980 ◽  
Vol 100 ◽  
pp. 83-86
Author(s):  
A. B Armour-Brown ◽  
T Tukiainen ◽  
B Wallin

The SYDURAN project completed the airborne gamma-spectrometer and geochemical sampling survey over some 14 000 km2 of south-west Greenland from the fjord Sermiligarssuk in the north-west to Kap Farvel in the south and up the east coast as far as the southern shore of Lindenows Fjord. This covered all the Ketilidian structural zones and a small area of Archaean as classified by Allaart (1976) (fig. 29). Geological field work and prospecting of a more detailed nature was carried out in five areas where previous work indicated possibie uranium mineralisation.


Author(s):  
Kristian Svennevig ◽  
Peter Alsen ◽  
Pierpaolo Guarnieri ◽  
Jussi Hovikoski ◽  
Bodil Wesenberg Lauridsen ◽  
...  

The geological map sheet of Kilen in 1:100 000 scale covers the south-eastern part of the Carboniferous– Palaeogene Wandel Sea Basin in eastern North Greenland. The map area is dominated by the Flade Isblink ice cap, which separates several minor isolated landmasses. On the semi-nunatak of Kilen, the map is mainly based on oblique photogrammetry and stratigraphical field work while in Erik S. Henius Land, Nordostrundingen and northern Amdrup Land the map is based on field data collected during previous, 1:500 000 scale regional mapping. Twenty-one Palaeozoic–Mesozoic mappable units were identified on Kilen, while the surrounding areas comprise the Late Cretaceous Nakkehoved Formation to the north-east and the Late Carboniferous Foldedal Formation to the south-west. On Kilen, the description of Jurassic–Cretaceous units follows a recently published lithostratigraphy. The Upper Palaeozoic–lowermost Cretaceous strata comprise seven formations and an informal mélange unit. The overlying Lower–Upper Cretaceous succession comprises the Galadriel Fjeld and Sølverbæk Formations, which are subdivided into six and five units, respectively. In addition, the Quaternary Ymer Formation was mapped on south-east Kilen. The Upper Palaeozoic to Mesozoic strata of Kilen are faulted and folded. Several post-Coniacian NNW–SSE-trending normal faults are identified and found to be passively folded by a later N–S compressional event. A prominent subhorizontal fault, the Central Detachment, separates two thrust sheets, the Kilen Thrust Sheet in the footwall and the Hondal Elv Thrust Sheet in the hanging wall. The style of deformation and the structures found on Kilen are caused by compressional tectonics resulting in post-extensional, presumably Early Eocene, folding and thrusting and basin inversion. The structural history of the surrounding areas and their relation to Kilen await further studies.


Sign in / Sign up

Export Citation Format

Share Document