scholarly journals Structural geology of central Peary Land, North Greenland

1979 ◽  
Vol 88 ◽  
pp. 55-62
Author(s):  
S.A.S Pedersen

The region investigated in 1978 between Jørgen Brønlund Fjord - Øvre Midsommersø in the south and Frederick E. Hyde Fjord in the north consists of c. 1½ km thiekness of Lower Palaeozoic carbonates overlain by an up to 1 km thick series of Silurian flysch (Christie & Peel, 1977). In general the region is part of the Palaeozoic platform that ean be divided into three major E-W trending physiographic belts: a southern belt where the carbonates form plateaus incised by steep valleys, a central belt consisting of characteristic conical mountains marked by concentric terraces of resistant sandstone beds in the flyseh (Dawes, 1976, fig. 249), and in the fold belt to the north the mountains rise up to altitudes of 1000-1500 m and are covered by extensive ice caps (fig. 17). The southern border of the region, the Øvre Midsommersø - Jørgen Brønlund Fjord area, was mapped by Jepsen (1971) while the Lower Palaeozoic stratigraphy in the central part af the region has been established by Christie & Peel (1977) at Børglum Elv. Some structural aspects af the gealogy at Frederick E. Hyde Fjord are briefly described by Dawes (1971) and Dawes & Soper (1973). Prior to the field work a comprehensive photogeological interpretation was carried out on vertical aerial photographs (seale c. 1:60000) and compiled on six uneontoured l: 100000 photomosaic maps. The 1978 field work and laboratory studies using a Kern PG 2 photogrammetric instrument form the first detailed study of the fold belt margin. For descriptive purposes the region investigated in 1978 has been subdivided into seven areas (fig. 17), the main struetural features of which form the basis of this report.

1974 ◽  
Vol 65 ◽  
pp. 18-23
Author(s):  
J.S Peel ◽  
P.R Dawes ◽  
J.C Troelsen

The north-east 'corner' of Greenland is geologically probably the least known region in North Greenland. Various expeditions have visited the coastal parts but geological detail, particularly faunal information, has remained surprisingly scarce. Initial field work by Koch (1923, 1925) and Troelsen (1949a, b, 1950) showed that a Precambrian to Silurian section - unfolded in the south, folded in the north - was unconformably overlain by a Carboniferous to Tertiary section, now referred to as the Wandel Sea basin (Dawes & Soper, 1973).


1979 ◽  
Vol 93 ◽  
pp. 1-40
Author(s):  
P.R Dawes ◽  
N.J Soper

Structural and stratigraphic detaiIs collected during reconnaissance fjeld work in northern Peary Land in 1969 are presented to substantiate the rather general accounts of the North Greenland fold belt hitherto published. The structural detail, largely in the form of graphic profiles sketched in the fieid, is referred to a structural frarnework in which three main deformation phases are recognised. The fold belt displays a roughly E-W zonation based on the progressive northerly increasing intensity of deformation and metamorphic effects that culminate along the northern coast in amphibolite-facies mineral assemblages in complexly folded schist lithologies. It is stressed that, while the conspicuous structural character of the fold belt is its northerly vergence seen particularly in the northernmost part, the detailed structural make-up of the fold belt is complex. Fold style and vergence vary considerably and the southern margin of the fold belt, autochthonous with respect to the platform, is characterised by south-verging folds. Some stratigraphical data is presented particularly from the Lower Palaeozoic sequence at the southern part of the fold belt that iIIustrates the basinal clastic facies at the sheIf-basin margin.


1980 ◽  
Vol 99 ◽  
pp. 89-98
Author(s):  
N.J Soper ◽  
A.K Higgins ◽  
J.D Friderichsen

This report concerns that part of the North Greenland fold belt in north Peary Land (Johannes V. Jensen Land) which lies east of Polkorridoren (the glacier filled depression between Frigg Fjord and Sands Fjord) and north of the Harder Fjord fault (fig. 40). The rocks forming the fold belt are mainly Lower Palaeozoic quartzites, carbonates, arkoses and shales, which are an extension of the Hazen Trough that stretched through the Queen Elizabeth Islands of Canada and across northern Greenland. Because of the northward increase in deformation and metamorphic grade, it is convenient to subdivide the region into a southerly, less deformed, area in which a stratigraphical sequence ean be established, and a northerly area in which only lithological units can be mapped. The dividing line corresponds to that, north of which, 'way-up' criteria cannot be used owing to the masking of the sedimentation structures by a pervasive schistosity. This line runs approximately from the northern end of Paradisfjeld to Bliss Bugt.


1974 ◽  
Vol 65 ◽  
pp. 11-13
Author(s):  
W.B.N Berry ◽  
A.J Boucot ◽  
P.R Dawes ◽  
J.S Peel

The precise age of the youngest part of the geosynclinal fill of the North Greenland fold belt has been the subject of important discussion, particularly with regard to the problem of dating the Palaeozoic diastrophism (Kerr, 1967; Dawes, 1971). Since Lauge Koch's field work between 1916 and 1923 it has been known that strata bearing Monograptus priodon were involved in the folding (Koch, 1920), indicating the presence of Silurian of Llandovery-Wenlock age. In addition, Poulsen (1934) identified Cyrtograptus cf. C. multiramus and Monograptus bohemicus in collections made by Koch from unfolded shales on the platform, to the south of the fold belt, which demonstrated that the section included Wenlock and early Ludlow strata.


1986 ◽  
Vol 128 ◽  
pp. 37-54
Author(s):  
A.K Higgins

A historical review of geological research in North Greenland is followed by a summary of the main results of the 1978-80 GGU expeditions to the region. New outcrops of Archaean and early Proterozoic crystalline rocks are recorded only as xenoliths in dykes and volcanic centres. A revised stratigraphy is applied to the middle Proterozoic Independence Fjord Group sandstones, while petrographic and isotopic studies have been made of the cross-cutting Midsommersø dolerites and the overlying Zig-Zag Dal Basalt Formation. No convincing evidence has been found of a Carolinidian orogenic episode separating these units from succeeding late Proterozoic sedimentary sequences. Lower Palaeozoic sediments dominate North Greenland and are divided into southern shelf and northern trough successions; new or revised stratigraphies are now applied in both settings. The shelf-trough boundary can be shown to have moved south with time, and a major early Silurian expansion of the trough is related to shelf subsidence and a new phase of turbidite deposition derived from the rising East Greenland Caledonian mountains. Devonian - Middle Carboniferous (Ellesmerian) deformation brought deposition to a close and created the North Greenland fold belt, in which deformation intensity and metamorphic grade increase northwards. Thin-skinned thrusting in association with west or south-facing folds is important in southern areas; this is one of the main differences in interpretation compared to earlier work in the fold belt. New outcrops of post-ElIesmerian sediments (Wandel Sea Basin) have mainly been recorded as fault or thrust bounded sequences; a new stratigraphy is applied to the Wandel Sea Basin succession. Cretaceous - Tertiary events include a suite of volcanic centres, dyke swarms, the Kap Washington Group volcanics, and faults and thrusts of Tertiary (Eurekan) age; all have been studied anew, as have the Quaternary deposits.


1966 ◽  
Vol 11 ◽  
pp. 11-15
Author(s):  
P.R Dawes

In the summers 1965 and 1966 reconnaissance mapping of 10 000 km2 of the rarely visited north coast of North Greenland was carried out. In 1965 the investigations were restricted to Hall Land (fig. 3) with a view of obtaining an insight into the stratigraphy of the Ordovician-Silurian succession, while in 1966 work centred on Nyeboe Land and Hendrik Island with cursory exammation of the north-west coast of Wulff Land and the islands in Sherard Osborn Fjord. Both the unfolded rocks of the south towards the Inland Ice and the folded rocks of the northern coast bordering the Robeson Channel and the Arctic Ocean were studied and in the two summers a broad view of the western part of the North Greenland fold belt i. e. west of Peary Land, has been obained.


Author(s):  
Niels Henriksen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Henriksen, N. (1998). North-East Greenland 1997–1998: a new 1:500 000 mapping project in the Caledonian fold belt (72°–75°N). Geology of Greenland Survey Bulletin, 180, 119-127. https://doi.org/10.34194/ggub.v180.5095 _______________ The Geological Survey of Denmark and Greenland (GEUS) continued in 1997 the systematic geological mapping programme for the 1:500 000 regional map series, with initiation of field work on sheet no. 11, which covers part of North-East Greenland. Of the 14 planned map sheets at 1:500 000 which will cover all of Greenland, 11 have been published, and one additional sheet for which field work has been completed is under compilation. Only two areas of Greenland are not yet covered by map sheets of this series: part of North-West Greenland (sheet no 6) and the target for the present project in North-East Greenland (sheet no. 11). The field work for the latter sheet is planned for two seasons, with the first season completed in 1997 and the second and final season to follow in 1998. The map sheet (no. 11) covers the region between Kong Oscar Fjord and the Stauning Alper in the south (72°N) and Kuhn Ø and Grandjean Fjord in the north (75°N, Fig. 1). The western part of this region is dominated by crystalline complexes of the East Greenland Caledonian fold belt. A post-Caledonian sequence of Upper Palaeozoic and Mesozoic sediments and Tertiary plateau basalts and intrusions covers the eastern part of the region. This article focuses on the Caledonian geology, whereas results from the work in the post-Caledonian sediments are described in the article by Stemmerik et al. (1998, this volume). The new Survey work for map sheet 11 represents a reinvestigation of areas extensively studied by geologists of Lauge Koch’s expeditions to East Greenland (1926–58), the principal results of which were compiled by John Haller for the 1:250 000 map sheets covering the region 72°–76°N (Koch & Haller 1971) and incorporated into an impressive regional description of the East Greenland Caledonides (Haller 1971). The Scoresby Sund region to the south of latitude 72°N and the Dove Bugt region to the north of latitude 75°N have already been investigated by the Geological Survey of Greenland (Henriksen 1986, 1997; Higgins 1994) as part of the present ongoing 1:500 000 regional mapping programme. The 1997–1998 mapping project will fill the last remaining gap in the Survey’s 1:500 000 coverage of North-East Greenland. All of North-East Greenland is covered by a set of wide angle black and white vertical aerial photographs taken in the period 1978–87 from an altitude of c. 14 km. On the basis of these aerial photographs and ground control points established by Kort- og Matrikelstyrelsen (National Survey and Cadastre – formerly the Geodetic Institute), new topographical maps of the entire region 72°–75°N, at a scale of 1:100 000, with 100 m contours, are being drawn at the Survey and will serve as a basis for the field investigations and the subsequent geological map compilations. Drawing of the topographic maps in the Survey´s photogrammetric laboratory is combined with photogeological interpretation both prior to and following the field investigations. In addition to establishing a general overview of the regional geology, the project includes activities aimed at supplementing knowledge of the economic potential of the region, in respect to both minerals (Harpøth et al. 1986) and hydrocarbons (Christiansen et al. 1992; Stemmerik et al. 1997). The field work co-ordinated by the Survey included co-operation with a geophysicist from the Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, who undertook rock magnetic investigations to facilitate interpretation of an AWI aeromagnetic survey, and four Norwegian sedimentologists from Saga Petroleum whose work was integrated with a Survey group working with Mesozoic sediments (Stemmerik et al. 1998, this volume). Logistic support was also given to three groups of geologists from the University of Oslo and three geologists from Massachussetts Institute of Technology, with whom agreements on scientific co-operation had been arranged in advance. Some aspects of the project are based on funding from the Danish National Science Foundation and Carlsberg Foundation, with support for special research topics concerning the pre-Caledonian basement terrain, Caledonian metamorphism, and studies of Upper Proterozoic carbonate sediments. The field investigations in 1997 were carried out during a seven week field season between early July and late August with participation of a total of 38 persons, including 32 geologists (Henriksen 1998). The work was supported by two helicopters and a small, fixed wing, Twin Otter aircraft, which operated from Mestersvig, a former airport which is kept open for limited special operations by the military sledge patrol Sirius. The GEUS group benefitted substantially from base facilities at Mestersvig, organised and manned by the Danish Polar Center (DPC). Transport between Mestersvig and Denmark was carried out by the Royal Danish Air Force (RDAF) using a C-130 Hercules aircraft.


1981 ◽  
Vol 106 ◽  
pp. 35-45
Author(s):  
A.K Higgins ◽  
J.D Friderichsen ◽  
N.J Soper

The part of the North Greenland fold belt mapped in 1980 includes Johannes V. Jensen Land west of Polkorridoren, the group of large islands to the west, and the eastern margin of Nansen Land (Map 2). The rocks forming the fold belt are mainly Lower Palaeozoic turbiditic sediments, deposited in an E-W trending trough which is an extension of the Hazen trough of northern Ellesmere Island, Canada. Observations on the stratigraphy, structure and metamorphism of the fold belt are given in this report. Brief descriptions of the E-W trending Harder Fjord fault zone, the Kap Cannon thrust zone, and important swarms of basic dykes are also included. A geological map covering the parts of the North Greenland fold belt mapped in both 1979 and 1980 is found in the back of this report (Map 2), and indudes all the place names mentioned in the text.


1987 ◽  
Vol 133 ◽  
pp. 99-106
Author(s):  
H.-J Bengaard ◽  
N.C Davis ◽  
J.D Friderichsen ◽  
A.K Higgins

Field work in Nansen Land and adjacent areas in 1985 has largely confirmed the provisional lithostratigraphy of the Paradisfjeld Group and Polkorridoren Group previously established; both are Lower Cambrian deep-water sequences. Some units of the Polkorridoren Group show marked thickness variations. Two major phases of Ellesmerian (Devonian-Carboniferous) deformation are recognised, whereas Eurekan (CretaceousTertiary) events are limited to relatively minor structures, and several phases of dyke intrusion.


1981 ◽  
Vol 106 ◽  
pp. 69-75
Author(s):  
I Parsons

A series of smal! volcanic centres cut Ordovician turbidites of Formation A in the southem part of Johannes V. Jensen Land between Midtkap and Frigg Fjord (Map 2). Their general location and main rock types were described by Soper et al. (1980) and their nomenclature is adopted here for fig. 22 with the addition of the small pipe B2. A further small intrusion, south-west of Frigg Fjord, was described by Pedersen (1980). The centres lie 5-10 km south of, and parallel to, the important Harder Fjord fault zone (fig. 22) which traverses the southern part of the North Greenland fold belt and shows substantial downthrow to the south (Higgins et al., this report).


Sign in / Sign up

Export Citation Format

Share Document