scholarly journals 3(4)-Amino-4(3)-nitro-1,2,5-oxadiazole-2-oxides and their Ring-opened Isomers-A DFT Treatment

Author(s):  
Lemi Türker

Amino and nitro substituted 1,2,5-oxadiazole-2-oxide isomers and their ring-opened nitroso forms have been subjected to density functional treatment at the level of B3LYP/6-311++G(d,p). The transition states for the ring opening processes are obtained and the corresponding activation energies have been calculated. Also, 1,3- and 1,5-proton tautomerism yielding imine, oxime and aci forms are investigated. For all the structures, the stabilities, the HOMO, LUMO energies and the interfrontier molecular orbital energy gaps are obtained and the effects of substituents (NH2 and NO2) are discussed.

2018 ◽  
Vol 762 ◽  
pp. 325-329 ◽  
Author(s):  
Gökhan Gece

Corrosion inhibition characteristics of artesunate and rutin on carbon steel in water has been studied using density functional theory (DFT). Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE), and global reactivity properties have been calculated at the B3LYP/6-311G(d,p) basis set. The results of theoretical calculations confirm the experimental findings on the superiority of rutin to protect the corrosion of steel in aqueous media compared to artesunate.


Author(s):  
Zineb TRIBAK ◽  
Mohammed Khalid SKALLI ◽  
Omar SENHAJI

The corrosion inhibition performance of a corrosion inhibitor on mild steel in phosphoric acid, namely 5-chloro-1-(2-(dimethylamino) ethyl) indoline-2,3-dione (TZCDI), was theoretically evaluated using density functional theory (DFT) at the B3LYP/6-31G+(d,p) level for all atoms by Gaussian 09W program. The quantum chemical properties, such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO) energy gap (∆Egap), dipole moment (μ), total hardness (η), and electronegativity (χ), were studied, and these descriptors were discussed in connection to the experimental inhibitory efficiency. The local reactivity was analyzed through the Fukui function in order to compare the possible sites for nucleophilic and electrophilic attacks. Accordingly, all data obtained using various theoretical calculation techniques were consistent with experiments.


2019 ◽  
Vol 800 ◽  
pp. 108-112 ◽  
Author(s):  
Emre Özdemir ◽  
Gökhan Gece

In this study, the dependence of corrosion inhibition and microbial effects of four N-hydroxymethylated amino acids, on their molecular and electronic structure is analyzed using density functional theory calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE) were calculated at the B3LYP/6-311G++(d,p) basis set. Although no simple relationship between the inhibition performance and the calculated data could be discerned, the comparison of inactivation rate constants with energetic parameters suggested that microbial effects of the compounds can be explained in terms of their side chain disparities.


Author(s):  
Guocai Tian ◽  
Weizhong Zhou

Three sets of ionic liquids such as 1-alkyl-3-methylimidazole chloride [Cnmim]Cl, 1-alkyl-3-methylimidazolium acetate [Cnmim]Ac and 1-octyl-3-methylimidazole salt [Omim]Y (n = 2, 4, 6, 8, and Y = Cl, BF4, HSO4, Ac and TFO) were used as corrosion inhibitor medium for corrosion protection of carbon steel. Electronic structures and reactivity of these ionic liquids, surface energy and electronic structures of the iron surface were systematically analyzed by density functional theory. By increasing the alkyl chain length of the [Cnmim]Cl and [Cnmim]Ac systems, the lowest unoccupied molecular orbital energy (ELUMO), the highest occupied molecular orbital energy (EHOMO), the softness (S) and polarizability (α) increased gradually, whereas electronegativity (χ), energy gap (ΔE), hardness (η), dipole moment (μ)and electrophilic index (ω) gradually decreased. For the [Omim]Y system, the structure parameters of ionic liquids are quite different, and only the polarizability (α) decreases gradually by increasing the length of the alkyl chain. The results show that inhibition is mainly [Cnmim]+ cations of the [Cnmim]Cl system, and the order of inhibition efficiency follows as [C2mim]Cl < [C4mim]Cl < [C6mim]Cl < [C8mim]Cl. Both [Cnmim]+ cations and the Ac− anion have inhibition effect for the [Xmim]Ac system, and the order of inhibition efficiency is [C8mim]Ac > [C6mim]Ac > [C4mim]Ac > [C2mim]Ac. For the [Omim]Y system, [Xmim]+ cations and anions (BF4−, HSO4−, Ac−, TfO−) have inhibition effect, and the order of inhibition efficiency is [Omim]TfO > [Omim]Ac > [Omim]HSO4 > [Omim]BF4 > [Omim]Cl.


2018 ◽  
Author(s):  
Sambasiva Bheemireddy ◽  
Waseem A. Hussain ◽  
Ain Uddin ◽  
Yachu Du ◽  
Matthew Hautzinger ◽  
...  

Isomerically pure 5,11-dibromo-2,8-dihexylanthra[2,3-b:7,6-b']dithiophene, a brominated analog of anthracenedithiophene (ADT), was prepared and utilized for a palladium catalyzed cyclopentannulation reaction with 3,3’-dimethoxyphenylacetylene. The resulting cyclopentannulated-ADT (CP-ADT) was found to be more photo-oxidatively stable than isoelectronic CP-pentacene analogs previously prepared. In addition, the CP-ADT was able to undergo an additional Scholl cyclodehydrogenation reaction to create a contorted aromatic, an incapable feat for previous CP-pentacene analogs. The resulting compound, 4-dihexyl-5,10,17,22-tetramethoxytetrabenzo[4,5:6,7:11,12:13,14]rubiceno[2,3-b:10,9-b']dithiophene, was significantly contorted out of planarity owing to four [5]helicene-like arrangements. The density functional theory (DFT) energy minimized structures suggests splay angles of 41.80 and 40.90 for the cove regions, which are significantly larger than previously published anthracene cyclopentannulated analogs. The contorted aromatic possessed a moderately low optical gap (1.50 eV) and relatively low Lowest Occupied Molecular Orbital energy (-3.70 eV).<br>


2018 ◽  
Author(s):  
Sambasiva Bheemireddy ◽  
Waseem A. Hussain ◽  
Ain Uddin ◽  
Yachu Du ◽  
Matthew Hautzinger ◽  
...  

Isomerically pure 5,11-dibromo-2,8-dihexylanthra[2,3-b:7,6-b']dithiophene, a brominated analog of anthracenedithiophene (ADT), was prepared and utilized for a palladium catalyzed cyclopentannulation reaction with 3,3’-dimethoxyphenylacetylene. The resulting cyclopentannulated-ADT (CP-ADT) was found to be more photo-oxidatively stable than isoelectronic CP-pentacene analogs previously prepared. In addition, the CP-ADT was able to undergo an additional Scholl cyclodehydrogenation reaction to create a contorted aromatic, an incapable feat for previous CP-pentacene analogs. The resulting compound, 4-dihexyl-5,10,17,22-tetramethoxytetrabenzo[4,5:6,7:11,12:13,14]rubiceno[2,3-b:10,9-b']dithiophene, was significantly contorted out of planarity owing to four [5]helicene-like arrangements. The density functional theory (DFT) energy minimized structures suggests splay angles of 41.80 and 40.90 for the cove regions, which are significantly larger than previously published anthracene cyclopentannulated analogs. The contorted aromatic possessed a moderately low optical gap (1.50 eV) and relatively low Lowest Occupied Molecular Orbital energy (-3.70 eV).<br>


Author(s):  
Frederico Marcondes Da Silva ◽  
Lillian Weitzel Coelho Paes

The objective of this work was to evaluate the efficiency of inhibition the corrosion of two organic molecules derived from benzimidazole, specifically 2-mercaptobenzimidazole (2Mcb) and 2-phenylbenzimidazole (2Fb). The calculations were performed using the Density Functional Theory (DFT) at the B3LYP with 6-311+G(d,p) basis set. The quantum parameters correlated with the inhibition efficiency such as the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMO) , energy gap (ΔE), electronegativity (χ), hardness (η), the fractions of electrons transferred (ΔN), electrophilicity (ω) and Fukui indices, were calculated. Calculations were performed in aqueous medium in both protonated and non-protonated forms. Theoretical results were compared with experimental data and a good correlation was found between the chemical quantum parameters and the efficiency of inhibition of the molecules. DOI: http://dx.doi.org/10.30609/JETI.2018-5270


2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>


2015 ◽  
Vol 80 (8) ◽  
pp. 997-1008 ◽  
Author(s):  
Maryam Dehestani ◽  
Leila Zeidabadinejad

Topological analyses of the electron density using the quantum theory of atoms in molecules (QTAIM) have been carried out at the B3PW91/6-31g (d) theoretical level, on bis(pyrazol-1-yl)methanes derivatives 9-(4-(di (1H-pyrazol-1-yl)-methyl)phenyl)-9H-carbazole (L) and its zinc(II) complexes: ZnLCl2 (1), ZnLBr2 (2) and ZnLI2 (3). The topological parameters derived from Bader theory were also analyzed; these are characteristics of Zn-bond critical points and also of ring critical points. The calculated structural parameters are the frontier molecular orbital energies highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), hardness (?), softness (S), the absolute electronegativity (?), the electrophilicity index (?) and the fractions of electrons transferred (?N) from ZnLX2 complexes to L. The numerous correlations and dependencies between energy terms of the Symmetry Adapted Perturbation Theory approach (SAPT), geometrical, topological and energetic parameters were detected and described.


Sign in / Sign up

Export Citation Format

Share Document