scholarly journals Dispersed biocomposite based on wollastonite/hydroxyapatite: Osteoplastic potential in terms of radiology

2020 ◽  
pp. 88-89
Author(s):  
V. I. Apanasevich ◽  
E. K. Papynov ◽  
I. S. Afonin ◽  
I. O. Evdokimov ◽  
O. O. Shichalin ◽  
...  

Objective: assessment of the bone tissue regeneration of alveolar ridge during implantation of biocomposite based on wollastonite/hydroxyapatite (HA) in the experiment.Methods: Four female rabbits were performed the extraction of lower left incisors under the general and local anesthesia followed by the augmentation with biocomposite. The results were assessed with cone beam computed tomography.Results: On the first day, the average density of bone structure of the alveolar socket was 37 HU; on the 60th day, it reached 1090 HU. The contour of the alveolar socket was not already visible on the 35th day. There were no signs of the osteolysis.Conclusions: The experiment result confirms the the participation of a CaSiO3/HA biocomposite in bone tissue regeneration, as evidenced by the dynamics of the increase in bone volume in the alveoli of the removed teeth of the lower jaw of experimental animals. 

2021 ◽  
pp. 94-104
Author(s):  
E. A. Nadyrov ◽  
V. I. Nikolaev ◽  
S. I. Kirilenko ◽  
V. V. Rozhin ◽  
N. G. Maltseva ◽  
...  

Objective. To study the dynamics of reparative bone tissue regeneration in experimental animals using a native transplantation autosmix (NTA).Materials and methods. Male Wistar rats weighing 180–200 g and aged 6–7 months were used. Bone tissue defects were modelled using a cutter with a diameter of 2 mm (experimental group). A similar defect of the middle third of the right tibia was formed in the control group animals without flling the defects with bone tissue. The animals were removed from the experiment on days 3, 7, 14, 30 and 60 of the experiment (per 6 animals for each observation period). The indicators of defect occupancy, necrosis, the area of bone trabeculae, the area of granulation tissue were determined in the histological sections. All the indicators were presented as percentage of the tested area. Osteoblasts, osteocytes, and osteoclasts were calculated in absolute values on the tested area.Results. The study has showed a higher rate of bone tissue formation in the bone defects in the experimental animals after autotransplantation of the bone mixture. Bone recovery in the experimental group had a higher rate, which was manifested by faster flling of the bone tissue defect, a low percentage of the necrosis area, a higher area of bone trabeculae, its rapid transformation into lamellar bone tissue.Conclusion. Osteogenesis had practically completed by day 30 of the experiment. At the same time, in the control group it had completed by day 60. The results obtained are a theoretical precondition for further research in the feld of bone autoplasty. Advanced development of surgical and minimally invasive technologies of bone mixture application will increase the effciency of modern reconstructive surgery of bones and joints.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1501 ◽  
Author(s):  
Baoqing Pei ◽  
Wei Wang ◽  
Nicholas Dunne ◽  
Xiaoming Li

With advances in bone tissue regeneration and engineering technology, various biomaterials as artificial bone substitutes have been widely developed and innovated for the treatment of bone defects or diseases. However, there are no available natural and synthetic biomaterials replicating the natural bone structure and properties under physiological conditions. The characteristic properties of carbon nanotubes (CNTs) make them an ideal candidate for developing innovative biomimetic materials in the bone biomedical field. Indeed, CNT-based materials and their composites possess the promising potential to revolutionize the design and integration of bone scaffolds or implants, as well as drug therapeutic systems. This review summarizes the unique physicochemical and biomedical properties of CNTs as structural biomaterials and reinforcing agents for bone repair as well as provides coverage of recent concerns and advancements in CNT-based materials and composites for bone tissue regeneration and engineering. Moreover, this review discusses the research progress in the design and development of novel CNT-based delivery systems in the field of bone tissue engineering.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Author(s):  
Bipin Gaihre ◽  
Xifeng Liu ◽  
Linli Li ◽  
A. Lee Miller ◽  
Emily T. Camilleri ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1611
Author(s):  
Caroline J. Harrison ◽  
Paul V. Hatton ◽  
Piergiorgio Gentile ◽  
Cheryl A. Miller

Injectable nanoscale hydroxyapatite (nHA) systems are highly promising biomaterials to address clinical needs in bone tissue regeneration, due to their excellent biocompatibility, bioinspired nature, and ability to be delivered in a minimally invasive manner. Bulk strontium-substituted hydroxyapatite (SrHA) is reported to encourage bone tissue growth by stimulating bone deposition and reducing bone resorption, but there are no detailed reports describing the preparation of a systematic substitution up to 100% at the nanoscale. The aim of this work was therefore to fabricate systematic series (0–100 atomic% Sr) of SrHA pastes and gels using two different rapid-mixing methodological approaches, wet precipitation and sol-gel. The full range of nanoscale SrHA materials were successfully prepared using both methods, with a measured substitution very close to the calculated amounts. As anticipated, the SrHA samples showed increased radiopacity, a beneficial property to aid in vivo or clinical monitoring of the material in situ over time. For indirect methods, the greatest cell viabilities were observed for the 100% substituted SrHA paste and gel, while direct viability results were most likely influenced by material disaggregation in the tissue culture media. It was concluded that nanoscale SrHAs were superior biomaterials for applications in bone surgery, due to increased radiopacity and improved biocompatibility.


2021 ◽  
Vol 22 (13) ◽  
pp. 6794
Author(s):  
Jae-Woo Kim ◽  
Yoon-Soo Han ◽  
Hyun-Mee Lee ◽  
Jin-Kyung Kim ◽  
Young-Jin Kim

The use of porous three-dimensional (3D) composite scaffolds has attracted great attention in bone tissue engineering applications because they closely simulate the major features of the natural extracellular matrix (ECM) of bone. This study aimed to prepare biomimetic composite scaffolds via a simple 3D printing of gelatin/hyaluronic acid (HA)/hydroxyapatite (HAp) and subsequent biomineralization for improved bone tissue regeneration. The resulting scaffolds exhibited uniform structure and homogeneous pore distribution. In addition, the microstructures of the composite scaffolds showed an ECM-mimetic structure with a wrinkled internal surface and a porous hierarchical architecture. The results of bioactivity assays proved that the morphological characteristics and biomineralization of the composite scaffolds influenced cell proliferation and osteogenic differentiation. In particular, the biomineralized gelatin/HA/HAp composite scaffolds with double-layer staggered orthogonal (GEHA20-ZZS) and double-layer alternative structure (GEHA20-45S) showed higher bioactivity than other scaffolds. According to these results, biomineralization has a great influence on the biological activity of cells. Hence, the biomineralized composite scaffolds can be used as new bone scaffolds in bone regeneration.


Author(s):  
Shue Jin ◽  
Xue Xia ◽  
Jinhui Huang ◽  
Chen Yuan ◽  
Yi Zuo ◽  
...  

Author(s):  
Hossein Mohammadi ◽  
Mohammadmajid Sepantafar ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong

Sign in / Sign up

Export Citation Format

Share Document