scholarly journals Development of Analytical Model for a Vertical Single U-Tube Ground-Coupled Heat Pump System

Author(s):  
Ali H. Tarrad

An analytical model was built to study the thermal design of a single vertical U-tube coupled heat pump under steady-state conditions. It was based on the philosophy of U-tube replacement by an equivalent thermal resistance situated between the heat transfer medium that flows inside the tube and the borehole boundary. An obstruction factor was introduced to account for the reduction of heat flow from or to a tube in the borehole due to the presence of the second leg of the U-tube. Two Copper U-tubes with wall factors of (12.5) and (14.29) were implemented to comprise several borehole configurations to verify the present work. The shank spacing was ranged between (2) and (4) times the U-tube outside diameter producing shank spacing to borehole diameter ratio range of (0.29-0.59). The model was utilized for the assessment of DX ground heat exchangers works as a condenser for cooling purposes. Reducing of the tube spacing to tube outside diameter ratio from (3.3) to (2) for both tube wall factors showed a rise for the borehole thermal resistance in the range of (22-54)% and (26.5-28)% predicted at wall factors of (12.5) and (14.29) respectively.

2014 ◽  
Vol 580-583 ◽  
pp. 2457-2460
Author(s):  
Zi Shu Qi ◽  
Qing Gao ◽  
Yan Liu ◽  
Zhen Hai Gao ◽  
Li Bai

The heat pump system by using earth energy is increasing very rapidly. In this paper, by studying the underground heat exchanger heat transfer mode, the computing platform for ground source heat pump system was established. Through a engineering case, the influence character of the circulation flow velocity in ground heat exchangers on the fluid temperature, the heat pump power consumption, and the length of system were analyzed, which provide an approach for system engineering design and operation prediction, and for the thermodynamic analysis of performance of system year by year and prospective study to guide the engineering practice.


2014 ◽  
Vol 548-549 ◽  
pp. 595-600
Author(s):  
Can Can Zhang ◽  
Yue Jin Yu

In order to analyze the influence of groundwater flow on ground heat exchangers with different arrangements, with a project in Nanjing the access temperature field in the multi-borehole field was simulated after the ground source heat pump system had been performed for a year. Simulation results show that the access temperature is higher in the ground surrounding the borehole than the center of the corresponding borehole, thus forming a thermal barrier surrounding the borehole. Groundwater flow helps relieve temperature imbalance owing to the imbalance of heating and cooling load. The performance of the ground heat exchangers is better in staggered arrangement than in aligned arrangement. In the borehole field, the boreholes upstream have thermal interference on those downstream. And the extent of thermal interference depends on the direction of the groundwater flow when the locations of the boreholes are fixed in the borehole field.


2012 ◽  
Vol 446-449 ◽  
pp. 1502-1505
Author(s):  
Cheng Hu Zhang ◽  
Zhi Gang Yang ◽  
De Xing Sun

Abstract—The article describes the growth and thermal resistance characteristics of the debris formation of the urban sewage source heat pump system, and describes the common measures.


Sign in / Sign up

Export Citation Format

Share Document