scholarly journals Dynamic systems for the analysis of the behavior of geosynthetics in railway engineering structures

2019 ◽  
Vol 2019 (11) ◽  
pp. 20-28
Author(s):  
Eligiusz Mieloszyk ◽  
Anita Milewska ◽  
Slawomir Grulkowski

While interacting with the elements of the engineering structures, geosynthetics can be treated as elastic membranes or shells placed on different types of foundation. Modeling of the real system takes into account the most important properties of the system and its elements. We will develop a physical and mathematical model in a form of generalized dynamic system. The mathematical description will use different operators leading to a continuous distributed system. The modeling will be further modified by development of discrete dynamic systems, which is enabled by the theory of generalized dynamic systems. This approach allows for the analysis of the problem with continuous and discrete signals. The results will show the response of the analyzed systems with analytic, numerical or hybrid methods.

1990 ◽  
Vol 112 (2) ◽  
pp. 276-282 ◽  
Author(s):  
S. Tanaka ◽  
P. C. Mu¨ller

The detection of an abrupt change in the parameters of a linear discrete dynamical system is considered in the framework of the easily implemented generalized-likelihood-ratio (GLR) method. This paper proposes a robust detection method based on a pattern recognition of the maximum GLR provided by the conventional step-hypothesized GLR method. A numerical example demonstrates that the proposed method is highly superior to the conventional step-hypothesized GLR method and to the Chi-squared test in both detection rate and detection speed.


2019 ◽  
Vol 8 (1) ◽  
pp. 486-495 ◽  
Author(s):  
Bimal Kumar Mishra ◽  
Ajit Kumar Keshri ◽  
Dheeresh Kumar Mallick ◽  
Binay Kumar Mishra

Abstract Internet of Things (IoT) opens up the possibility of agglomerations of different types of devices, Internet and human elements to provide extreme interconnectivity among them towards achieving a completely connected world of things. The mainstream adaptation of IoT technology and its widespread use has also opened up a whole new platform for cyber perpetrators mostly used for distributed denial of service (DDoS) attacks. In this paper, under the influence of internal and external nodes, a two - fold epidemic model is developed where attack on IoT devices is first achieved and then IoT based distributed attack of malicious objects on targeted resources in a network has been established. This model is mainly based on Mirai botnet made of IoT devices which came into the limelight with three major DDoS attacks in 2016. The model is analyzed at equilibrium points to find the conditions for their local and global stability. Impact of external nodes on the over-all model is critically analyzed. Numerical simulations are performed to validate the vitality of the model developed.


2021 ◽  
Author(s):  
Amira Abdelrasoul

The low-pressure membrane applications are considered to be the most effective and sustainable methods of addressing environmental problems in treating water and wastewater that meets or exceed stringent environmental standards. Nevertheless, membrane fouling is one of the primary operational concerns that is currently hindering a more widespread application of ultrafiltration (UF) with a variety of contaminants. Membrane fouling leads to higher operating costs, higher energy demand, reduced membrane life time, and increased cleaning frequency. As a consequence, an efficient and well-planned UF process is becoming a necessity for consistent and long-term monetary returns. Examining the source and mechanisms of foulant attachment to the membrane’s surface is critical when it comes to the research of membrane fouling and its potential practical implementation. A mathematical model was developed in this study in order to predict the amount of fouling based on an analysis of particle attachments. This model was developed using both homogeneous and heterogeneous membranes, with a uniform and non-uniform pore sizes for the UF of simulated latex effluent with a wide range of particle size distribution. The objective of this mathematical model was to effectively identify and address the common shortcomings of previous fouling models, and to account for the existing chemical attachments in membrane fouling. The mathematical model resulting from this study was capable of accurately predicting the mass of fouling retained by the membrane and the increase in transmembrane pressure (TMP). In addition, predictive models of fouling attachments were derived and now form an extensive set of mathematical models necessary for the prediction of membrane fouling at a given operating condition, as well as, the various membrane surface charges. Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 μm and a molecular weight cut off of 60,000 respectively, were used in the experimental designs under a constant feed flow rate and a cross-flow mode in UF of the simulated latex paint effluent. The TMP estimated from the model agreed with the experimentally measured values at different operating conditions, mostly within 5.0 - 8.0 % error, and up to 13.0% error for the uniform, and non-uniform pore size membranes, respectively. Furthermore, different types of membranes with a variety of molecular weight cut-off (MWCO) values were tested so as to evaluate the accuracy of the models for a generalized application. In addition , a power consumption model, incorporating fouling attachment as well as chemical and physical factors in membrane fouling, was developed in order to ensure accurate prediction and scale-up. Innovative remediation techniques were likewise developed and applied in order to minimize membrane fouling, enhance the membrane performance, and save energy. Fouling remediation methodologies included the pre-treating of the latex effluent, so as to limit its fouling propensity by using different types of surfactants as cationic and anionic, in addition to the pH change. The antifouling properties of the membranes were improved through the implementation of the membrane pH treatment and anionic surfactant treatment. Increasing the ionic strength of latex effluent or enhancing the membrane surface hydrophilicity facilitated a significant increase in the cumulative permeate flux, a substantial decrease in the total mass of fouling, and a noticeable decrease in the specific power consumption.


2021 ◽  
Author(s):  
Amira Abdelrasoul

The low-pressure membrane applications are considered to be the most effective and sustainable methods of addressing environmental problems in treating water and wastewater that meets or exceed stringent environmental standards. Nevertheless, membrane fouling is one of the primary operational concerns that is currently hindering a more widespread application of ultrafiltration (UF) with a variety of contaminants. Membrane fouling leads to higher operating costs, higher energy demand, reduced membrane life time, and increased cleaning frequency. As a consequence, an efficient and well-planned UF process is becoming a necessity for consistent and long-term monetary returns. Examining the source and mechanisms of foulant attachment to the membrane’s surface is critical when it comes to the research of membrane fouling and its potential practical implementation. A mathematical model was developed in this study in order to predict the amount of fouling based on an analysis of particle attachments. This model was developed using both homogeneous and heterogeneous membranes, with a uniform and non-uniform pore sizes for the UF of simulated latex effluent with a wide range of particle size distribution. The objective of this mathematical model was to effectively identify and address the common shortcomings of previous fouling models, and to account for the existing chemical attachments in membrane fouling. The mathematical model resulting from this study was capable of accurately predicting the mass of fouling retained by the membrane and the increase in transmembrane pressure (TMP). In addition, predictive models of fouling attachments were derived and now form an extensive set of mathematical models necessary for the prediction of membrane fouling at a given operating condition, as well as, the various membrane surface charges. Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 μm and a molecular weight cut off of 60,000 respectively, were used in the experimental designs under a constant feed flow rate and a cross-flow mode in UF of the simulated latex paint effluent. The TMP estimated from the model agreed with the experimentally measured values at different operating conditions, mostly within 5.0 - 8.0 % error, and up to 13.0% error for the uniform, and non-uniform pore size membranes, respectively. Furthermore, different types of membranes with a variety of molecular weight cut-off (MWCO) values were tested so as to evaluate the accuracy of the models for a generalized application. In addition , a power consumption model, incorporating fouling attachment as well as chemical and physical factors in membrane fouling, was developed in order to ensure accurate prediction and scale-up. Innovative remediation techniques were likewise developed and applied in order to minimize membrane fouling, enhance the membrane performance, and save energy. Fouling remediation methodologies included the pre-treating of the latex effluent, so as to limit its fouling propensity by using different types of surfactants as cationic and anionic, in addition to the pH change. The antifouling properties of the membranes were improved through the implementation of the membrane pH treatment and anionic surfactant treatment. Increasing the ionic strength of latex effluent or enhancing the membrane surface hydrophilicity facilitated a significant increase in the cumulative permeate flux, a substantial decrease in the total mass of fouling, and a noticeable decrease in the specific power consumption.


Author(s):  
Evgeny Popov ◽  
◽  
Yury Shornikov ◽  

Heterogeneous dynamic systems (HDS) simultaneously describe processes of different physical nature. Systems of this kind are typical for numerous applications. HDSs are characterized by the following features. They are often multimode or hybrid systems. In general, their modes are defined as initial value problems (Cauchy problems) for implicit differential-algebraic systems of equations. Due to the presence of heterogeneous dynamic components or processes evolving in both time and space, the dimension of the complete system of equations may be pretty high. In some cases, the system of equations has an internal structure, for instance, the differential-algebraic system of equations approximating a partial differential equation by the method of lines. An original huge system of equations can then be algorithmically rewritten in a compact form. Moreover, heterogeneous hybrid dynamical systems can generate events of qualitatively different types. Therefore one has to use different numerical event detection algorithms. Nowadays, HDSs are modeled and simulated in computer environments. The modeling languages widely used by engineers do not allow them to fully specify all the properties of the systems of this class. For instance, they do not include event typing constructs. That is why a declarative general-purpose modeling language named LISMA_HDS has been developed for the computer-aided modeling and ISMA simulation environment. The language takes into account all of the characteristic features of HDSs. It includes constructs for plain or algorithmic declaration of model constants, initial value problems for explicit differential-algebraic systems of equations, and initial guesses for variables. It also allows researchers to define explicit time events, modes and transitions between them upon the occurrence of events of different types, to use macros and implement event control. LISMA_HDS is defined by a generative grammar in an extended Backus-Naur form and semantic constraints. It is proved that the grammar belongs to the LL(2) subclass of context-free grammars.


Sign in / Sign up

Export Citation Format

Share Document