scholarly journals Fabrication of surface nano composites of Al/B4C at selected regions by Friction stir processing

Author(s):  
N Yuvaraj

Friction stir Processing is an important surface modifying technique to produce composite surface layer. This paper evaluates the effect of tool rotational speed, traverse speed and shoulder diameter on hardness and wear behavior of Al-B4C surface nano composite produced by FSP method. A Five level rotatable central composite design is used to predict the optimum input process parameters to fabricate the sound composite layer. Response surface methodology (RSM) Technique was used for analyzing the relationship between responses and process parameters. The results revealed that the shoulder diameter has more influence on achieving maximum hardness and wear resistance. To study the wear mechanisms, the selected wear worn out samples are analyzed through SEM studies

2012 ◽  
Vol 05 ◽  
pp. 367-374 ◽  
Author(s):  
ALI SHAMSIPUR ◽  
SEYED FARSHID KASHANI-BOZORG ◽  
ABBAS ZAREIE-HANZAKI

In the present investigation, novel Ti / SiC surface nano-composite layer was successfully fabricated by dispersing nano-sized SiC particles into commercially pure titanium plates employing friction stir processing technique. The process parameters such as tool rotation and advancing speeds were adjusted to produce defect-free surface composite layer, however, uniform distribution of the nano-size SiC particles in a matrix of titanium was achieved after the second pass. The micro hardness value of the Ti / SiC nano-composite surface layer was found to be ~534 HV; this is 3.3 times higher than that of the commercially pure titanium substrate. No reaction was detected between SiC powders and the titanium matrix after friction stir processing.


2011 ◽  
Vol 383-390 ◽  
pp. 2747-2752
Author(s):  
Arash Aghagol ◽  
Saeed Mahmoodi Darani ◽  
Karen Abrinia ◽  
Mohammad Kazem Besharati Givi

In this research, a new application of friction stir processing (FSP) in producing surface composite on circular billets was introduced. Al/Cu composite was fabricated by FSP on the surface of a 1050 aluminium cylinder with the diameter of 60 mm. Then this cylinder with surface composite was extruded with the extrusion ratio of 1.7. Finally, microstructure and microhardness were investigated before and after the extrusion. H13 hot work steel was used as the material of the tool whose pin diameter and length were 6 mm and shoulder diameter was 18 mm. The rotation and traverse speed of the tool were 1000 rpm and 25 mm/min respectively. The microstructural investigations show that the thickness of the composite layer decreases and a uniform layer of the composite remains on the surface after the extrusion. Also the microhardness measurements demonstrated that the hardness of the composite layer was higher than the base metal and the microhardness of all zones increased after the extrusion.


2017 ◽  
pp. 1293-1305
Author(s):  
G. Venkateswarlu ◽  
M.J. Davidson ◽  
G.R.N. Tagore ◽  
P. Sammaiah

Friction stir processing (FSP) has been developed on the principles of friction stir welding (FSW) as an effective and efficien new method for grain refinement and microstructural modification, providing intense plastic deformation as well as higher strain rates than other conventional severe plastic deformation methods. FSP produces an equiaxed homogeneous microstructure consisting of fine grains, resulting in the enhancement of the properties of the material at room temperature. The objective of the present paper is to examine the influence of friction stir processing (FSP) parameters namely tool rotational speed (RS), tool traverse speed (TS) and tool tilt angle (TA) on the microstructures of friction stir processed AZ31B-O magnesium alloy. This investigation has focused on the microstructural changes occurred in the dynamically recrystallised nugget zone/ stir zone and the thermo mechanically affected zone during FSP. The results presented in this work indicate that all the three FSP process parameters have a significant effect on the resulting microstructure and also found that the rotational speed has greatly influenced the homogenization of the material. The grain refinement is higher at intermediate rotational speed (1150 rpm), traverse speed (32 mm / min and tilt angle (10). It is established that FSP can be a good grain refinement method for improving the properties of the material.


2016 ◽  
Vol 4 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. Ahmadkhaniha ◽  
M. Heydarzadeh Sohi ◽  
A. Salehi ◽  
R. Tahavvori

Author(s):  
G. Venkateswarlu ◽  
M.J. Davidson ◽  
G.R.N. Tagore ◽  
P. Sammaiah

Friction stir processing (FSP) has been developed on the principles of friction stir welding (FSW) as an effective and efficien new method for grain refinement and microstructural modification, providing intense plastic deformation as well as higher strain rates than other conventional severe plastic deformation methods. FSP produces an equiaxed homogeneous microstructure consisting of fine grains, resulting in the enhancement of the properties of the material at room temperature. The objective of the present paper is to examine the influence of friction stir processing (FSP) parameters namely tool rotational speed (RS), tool traverse speed (TS) and tool tilt angle (TA) on the microstructures of friction stir processed AZ31B-O magnesium alloy. This investigation has focused on the microstructural changes occurred in the dynamically recrystallised nugget zone/ stir zone and the thermo mechanically affected zone during FSP. The results presented in this work indicate that all the three FSP process parameters have a significant effect on the resulting microstructure and also found that the rotational speed has greatly influenced the homogenization of the material. The grain refinement is higher at intermediate rotational speed (1150 rpm), traverse speed (32 mm / min and tilt angle (10). It is established that FSP can be a good grain refinement method for improving the properties of the material.


Author(s):  
S. F. K. Bozorg ◽  
A. S. Zarghani ◽  
A. Zarei-Hanzaki ◽  
Mohamad Rusop ◽  
Rihanum Yahaya Subban ◽  
...  

2015 ◽  
Vol 819 ◽  
pp. 91-96 ◽  
Author(s):  
Kahtan S. Mohammed ◽  
Hasan I. Dawood ◽  
M. Darus Daud

In this study, alumina powder of two particle sizes, 1.0 and 3.0 μm were dispersed into the surface layer of pure commercial aluminum sheets by Friction Stir Processing technique (FSP) to produce a composite surface layer of Al/Al2O3. The processing parameters such as traverse speed and applied load were kept constant throughout the whole process at 45 mm/min and 10 kN respectively. Samples were subjected to various numbers of FSP passes from 1 to 3. The effect of tool rotation speed, alumina particle size and the number of the FSP passes on material flow were investigated. Mechanical properties evaluation of the surface layer revealed that hardness and strength are a result of the interactions of FSP passes and tool rotational speed. The increments in hardness of the surface layer showed big variation between samples of small alumina particle size and that of larger alumina particle size. Finer particles gave better hardness and strengthening effect than the coarse particles did. Microstructural observations were carried out using optical and scanning electron microscopy (SEM) on samples’ cross sections perpendicular to the tool traverse direction.


Author(s):  
Vahid M Khojastehnezhad ◽  
Hamed H Pourasl ◽  
Arian Bahrami

Friction stir processing is one of the solid-state processes which can be used to modify the structure and properties of alloys. In addition, it has become one of the most promising techniques for the preparation of the surface layer composites. To pursue cost savings and a time-efficient design, the mathematical model and optimization of the process can represent a valid choice for engineers. Friction stir processing was employed to generate an Al 6061/Al2O3-TiB2 hybrid composite layer, and mechanical properties such as the hardness and wear behavior were also measured. The relationship between the hardness and wear behavior, process parameters of friction stir processing were evaluated using an artificial neural network and response surface methodology. The rotational speed (1500–1800 rpm), traverse speeds (25, 50, 100 mm/min), and the number of passes (1–4) with constant axial force (2.61 kN) were used as the input, while the hardness and weight loss values were the output. Experimentally, the results showed that the process parameters have significant effect on hardness and wear behavior of Al 6061/Al2O3-TiB2. In addition, the developed artificial neural network and response surface methodology models can be employed as alternative methods to compute the hardness and weight loss for given process parameters. The results of both models showed that the estimated values for the hardness and wear behavior of the processed zone had an error less than 0.60%, which indicated reliability, and an evaluation of the estimated values of both models and the experimental values confirmed that the artificial neural network is a better model than response surface methodology.


Author(s):  
Sankar Ramaiyan ◽  
Udayakumar Mani ◽  
Rathinasuriyan Chandran ◽  
Senthil Kumar Velukkudi Santhanam

In this research, friction stir processing of AZ31B magnesium alloy of 6 mm thickness was done in submerged conditions. The process parameters, i.e. tool pin profile (simple cylindrical, stepped cylindrical, stepped square), rotational speed ranging from 800 to 1200 rpm and traverse speed ranging from 0.5 to 1.5 mm/sec were optimized using the multi response optimization technique. The experiment was conducted with L27 orthogonal arrays. The Immersion test and hardness have been considered as output response. From the view of an application, it would be more significant to optimize the Immersion Corrosion rate and Hardness of Submerged Friction Stir Processed AZ31B alloy. Thus, this study aims at optimizing the process parameters, including various tool pin profiles, feed rates and rotational speeds with corrosion rate and micro hardness using TOPSIS. Using analysis of variance (ANOVA), the most significant parameter effect of the submerged friction stir processing was determined.


Sign in / Sign up

Export Citation Format

Share Document