scholarly journals Formations of AZ91/Al2O3 nano-composite layer by friction stir processing

2016 ◽  
Vol 4 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. Ahmadkhaniha ◽  
M. Heydarzadeh Sohi ◽  
A. Salehi ◽  
R. Tahavvori
2012 ◽  
Vol 05 ◽  
pp. 367-374 ◽  
Author(s):  
ALI SHAMSIPUR ◽  
SEYED FARSHID KASHANI-BOZORG ◽  
ABBAS ZAREIE-HANZAKI

In the present investigation, novel Ti / SiC surface nano-composite layer was successfully fabricated by dispersing nano-sized SiC particles into commercially pure titanium plates employing friction stir processing technique. The process parameters such as tool rotation and advancing speeds were adjusted to produce defect-free surface composite layer, however, uniform distribution of the nano-size SiC particles in a matrix of titanium was achieved after the second pass. The micro hardness value of the Ti / SiC nano-composite surface layer was found to be ~534 HV; this is 3.3 times higher than that of the commercially pure titanium substrate. No reaction was detected between SiC powders and the titanium matrix after friction stir processing.


Author(s):  
N Yuvaraj

Friction stir Processing is an important surface modifying technique to produce composite surface layer. This paper evaluates the effect of tool rotational speed, traverse speed and shoulder diameter on hardness and wear behavior of Al-B4C surface nano composite produced by FSP method. A Five level rotatable central composite design is used to predict the optimum input process parameters to fabricate the sound composite layer. Response surface methodology (RSM) Technique was used for analyzing the relationship between responses and process parameters. The results revealed that the shoulder diameter has more influence on achieving maximum hardness and wear resistance. To study the wear mechanisms, the selected wear worn out samples are analyzed through SEM studies


2013 ◽  
Vol 747-748 ◽  
pp. 313-319 ◽  
Author(s):  
Fen Cheng Liu ◽  
Qiang Liu ◽  
Chun Ping Huang ◽  
Kun Yang ◽  
Cheng Gang Yang ◽  
...  

AZ80/Al composite plate was fabricated by means of friction stir processing (FSP) aimed at the improvement of corrosion resistance of magnesium alloy. The cross-section microstructure, surface morphology and corrosion resistance of the Al composite layer were investigated. The experiment results indicated that a dense composite Al layer with superfine and uniform grains was formed, and a few amount of intermetallic compounds existed in the area of Mg/Al interface. The bonding strength of AZ80 magnesium alloy substrate and 1060 pure Al layer was proved to be high which was resulted from the metallurgical bonding of FSP. Microhardness measurement showed the continuous changing of microhardness values from the outmost surface of composite Al layer to the magnesium alloy substrate. Results of electrochemical corrosion test of the composite plate in 5 wt.% NaCl solution showed the better protection effect of the composite Al layer on the magnesium alloy in a corrosion medium. Almost the same corrosion level on the whole corrosion surface was observed which indicated the highly uniform microstructure of the composite layer. It was also proved that the plain arches on the outmost surface of the composite Al layer had no influence on the corrosion resistance of composite Al layer.


2012 ◽  
Vol 05 ◽  
pp. 375-382
Author(s):  
P. ASADI ◽  
M. K. BESHARATI GIVI ◽  
G. FARAJI

Friction stir processing (FSP) is an effective tool to produce a surface composite layer with enhanced mechanical properties and modified microstructure of as-cast and sheet metals. In the present work, the mechanical and microstructural properties of as-cast AZ 91 magnesium alloy were enhanced by FSP and an AZ 91/ SiC surface nanocomposite layer has been produced using 30 nm SiC particles. Effect of the FSP pass number on the microstructure, grain size, microhardness, and powder distributing pattern of the surface developed has been investigated. The developed surface nanocomposite layer presents a higher hardness, an ultra fine grain size and a better homogeneity. Results show that, increasing the number of FSP passes enhances distribution of nano-sized SiC particles in the AZ 91 matrix, decreases the grain size, and increases the hardness significantly. Also, changing of the tool rotating direction results much uniform distribution of the SiC particles, finer grains, and a little higher hardness.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 1073-1076 ◽  
Author(s):  
YOONES ERFAN ◽  
SEYED FARSHID KASHANI-BOZORG

Friction stir processing (FSP) was employed to incorporate nano-sized SiC particles into the surface of AZ31 magnesium substrate in order to produce surface nanocomposite layers. Characterization of the microstructure of the processed layers exhibited powders agglomeration which was found to disperse with increasing the tool rotation speed/advancing speed ratio. A uniform distribution of SiC particles with a mean particle size of ~95 nm was achieved after second FSP passes. The matrix grain size was found to decrease by increasing the tool advancing speed and number of FSP passes; however, increasing the advancing speed resulted in introduction of defects which leads to tunnels. The micro hardness value of the composite layer with uniform distribution of nano-size SiC particles was found to be almost twice of that of the AZ31 substrate.


Author(s):  
Khalid A Al-Ghamdi ◽  
G Hussain ◽  
R Hashemi

Friction stir processing is a novel material fabrication technique. This study was undertaken in order to investigate a suitable set of friction stir processing parameters to form AL7075T651/TiN nano composite. A number of samples were produced by varying the process parameters, namely, tool-pin geometry, number of passes and the direction of tool rotation. The pin geometries employed include triangular, square and threaded taper; the passes were varied over two levels (i.e. 2 and 4) and the tool rotation was changed as clockwise and counter clockwise between the successive passes. The effect of these variations on the composite was quantified through several microstructural and mechanical tests. The increase in the number of passes was observed to improve various characteristics of the composite (i.e. distribution of TiN particles, grain refinement and mechanical properties). The effect of tool geometry, however, was associated with the choice of the number of passes. The change in the direction of tool rotation between the consecutive passes was witnessed to improve the distribution of TiN particles. From the X-ray diffraction analysis of the samples, the formation of several new phases was detected. These were found to have effect on the mechanical properties of the composite. A good trade-off among various properties of the composite (i.e. hardness, tensile strength and ductility) was realized when the friction stir processing was performed using square tool and employing four passes with simultaneously changing the direction of tool rotation between the successive passes. This study is the first report on the fabrication of AL7075T651/TiN nano composite through friction stir processing route.


Sign in / Sign up

Export Citation Format

Share Document