FABRICATION OF TI/SIC SURFACE NANO-COMPOSITE LAYER BY FRICTION STIR PROCESSING

2012 ◽  
Vol 05 ◽  
pp. 367-374 ◽  
Author(s):  
ALI SHAMSIPUR ◽  
SEYED FARSHID KASHANI-BOZORG ◽  
ABBAS ZAREIE-HANZAKI

In the present investigation, novel Ti / SiC surface nano-composite layer was successfully fabricated by dispersing nano-sized SiC particles into commercially pure titanium plates employing friction stir processing technique. The process parameters such as tool rotation and advancing speeds were adjusted to produce defect-free surface composite layer, however, uniform distribution of the nano-size SiC particles in a matrix of titanium was achieved after the second pass. The micro hardness value of the Ti / SiC nano-composite surface layer was found to be ~534 HV; this is 3.3 times higher than that of the commercially pure titanium substrate. No reaction was detected between SiC powders and the titanium matrix after friction stir processing.

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 799 ◽  
Author(s):  
Alihan Amirov ◽  
Alexander Eliseev ◽  
Evgeny Kolubaev ◽  
Andrey Filippov ◽  
Valery Rubtsov

The use of electric arc or gas welding in the manufacture of titanium components often results in low quality welded joints due to large residual stresses and strains. A successful solution to this problem can be found in the application of friction stir welding. However, friction stir welding (FSW) of titanium alloys is complicated by rapid tool wear under high loads and temperatures achieved in the process. This paper studies the durability of a tool made of ZhS6U Ni-based superalloy used for friction stir processing of commercially pure titanium and the effect of the tool wear on the weld quality. The total length of the titanium weld formed by the tool without failure comprised 2755 mm. The highest wear of the tool is observed at the base of the pin, which brings about the formation of macrodefects in the processed material. The tool overheating causes an increase in the dendrite element size of ZhS6U alloy. The transfer layer contains chemical elements of this alloy, indicating that the tool wear occurs by diffusion and adhesion. As a result of processing, the tensile strength of commercially pure titanium increased by 25%.


Author(s):  
N Yuvaraj

Friction stir Processing is an important surface modifying technique to produce composite surface layer. This paper evaluates the effect of tool rotational speed, traverse speed and shoulder diameter on hardness and wear behavior of Al-B4C surface nano composite produced by FSP method. A Five level rotatable central composite design is used to predict the optimum input process parameters to fabricate the sound composite layer. Response surface methodology (RSM) Technique was used for analyzing the relationship between responses and process parameters. The results revealed that the shoulder diameter has more influence on achieving maximum hardness and wear resistance. To study the wear mechanisms, the selected wear worn out samples are analyzed through SEM studies


Author(s):  
Aleksandra Fortier ◽  
Nilesh Kumar ◽  
Mageshwari Komarasamy ◽  
Rajiv S. Mishra

Manufacturing of a component through powder metallurgy (PM) route involves at least three critical steps: powder blending, compaction, and sintering. Overall, the PM route takes 4 to 8 steps to get to the final product. Moreover, it requires a huge amount of capital investment to perform every step of the manufacturing process via PM route. Friction stir processing (FSP) is a derivative of friction stir welding which has emerged as a generic microstructural modification tool in last one decade. The aim of the current work was to explore the possibility of decreasing the number of steps required in the manufacturing of a product using the PM technique. Using the FSP method, the manufacturing process is reduced to two steps and the mechanical properties of the final product are significantly improved. In this study, commercially pure titanium (Ti) powder was used. The two-step process appeared extremely efficient and it involved: 1) constraining the Ti-powder in a die and using a punch to consolidate it in a final disk-like geometry, 2) next, the consolidated disk-shaped product was processed using FSP tool and methods. Initial mechanical characterization results show peak hardness of the FSP processed Ti-powder product to be approximately 436 HV0.3 with average hardness measured at about 251 HV. The electron backscattered diffraction of the FSP-assisted sintered region showed equiaxed grains with average grain size to be 440 ±254 nm. The initial result indicates FSP can be used as a manufacturing tool for consolidating powders in to bulk solid form.


2013 ◽  
Vol 739 ◽  
pp. 196-200 ◽  
Author(s):  
T.M. Yue ◽  
K.J. Huang ◽  
H. Xie

A three-layer Ti-Si graded coating was fabricated on a commercially pure titanium substrate by laser cladding with Ti-5.8 at%Si, Ti-9.0 at%Si and Ti-13.5 at%Si mixed powders. The microstructure of the three layers comprised Ti-Si solid solutions (Ti) and the Ti5Si3 compound. As the silicon content was increased, the microstructure along the direction of deposition underwent a series of changes, including replacement of the (Ti) phase by the primary Ti5Si3 phase, and a change of the (Ti)/Ti5Si3 eutectic growth from lamellar to anomalous.


2012 ◽  
Vol 445 ◽  
pp. 595-600 ◽  
Author(s):  
Ali Shamsipur ◽  
Seyed Farshid Kashani-Bozorg ◽  
Abbas Zarei Hanzaki

In the present investigation, the surface of a commercially pure titanium (CP-Ti) substrate was modified to Ti/SiC nanocomposite layer employing friction stir processing technique; nanosized SiC powder was introduced into the stir zone provided by a rotating and advancing tool. The fabricated nanocomposite surface layer exhibited a micro hardness value of ~535HV which is much greater than 160HV of the substrate material using Vickers micro hardness testing. In addition, the un-treated CP-Ti substrate showed sever wear regime in the pin-on-disc test against the hardened AISI 52100 steel. It suffers extensive typical adhesive wear dominated by plastic deformation as evidenced by scanning electron microscopy. Also, deep grooves were formed, i.e. evidence of abrasive wear. Contrary to this, enhanced wear properties were detected for the Ti/SiC nanocomposite surface layer, i.e. lower coefficient of friction and weight loss. The nanocomposite surface layer was found to be adherent to the underlying substrate during the pin-on-disc test. The superior wear behavior of the nanocomposite surface layer is attributed to its improved micro hardness value due to the presence of hard nanosize SiC particles in a refined titanium matrix.


2012 ◽  
Vol 05 ◽  
pp. 375-382
Author(s):  
P. ASADI ◽  
M. K. BESHARATI GIVI ◽  
G. FARAJI

Friction stir processing (FSP) is an effective tool to produce a surface composite layer with enhanced mechanical properties and modified microstructure of as-cast and sheet metals. In the present work, the mechanical and microstructural properties of as-cast AZ 91 magnesium alloy were enhanced by FSP and an AZ 91/ SiC surface nanocomposite layer has been produced using 30 nm SiC particles. Effect of the FSP pass number on the microstructure, grain size, microhardness, and powder distributing pattern of the surface developed has been investigated. The developed surface nanocomposite layer presents a higher hardness, an ultra fine grain size and a better homogeneity. Results show that, increasing the number of FSP passes enhances distribution of nano-sized SiC particles in the AZ 91 matrix, decreases the grain size, and increases the hardness significantly. Also, changing of the tool rotating direction results much uniform distribution of the SiC particles, finer grains, and a little higher hardness.


2016 ◽  
Vol 4 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. Ahmadkhaniha ◽  
M. Heydarzadeh Sohi ◽  
A. Salehi ◽  
R. Tahavvori

Sign in / Sign up

Export Citation Format

Share Document